📄 dtbsrmm.c
字号:
/*-------------------------------------------------------|| NIST SPARSE BLAS v. 0.9 (Sat Jul 6 14:27:21 EDT 1996) || || Authors: || Karin A. Remington and Roldan Pozo || National Institute of Standards and Technology || || Based on the interface standard proposed in: | | "A Revised Proposal for a Sparse BLAS Toolkit" by || S. Carney and K. Wu -- University of Minnesota || M. Heroux and G. Li -- Cray Research | | R. Pozo and K.A. Remington -- NIST || || Contact: || Karin A. Remington, email: kremington@nist.gov |--------------------------------------------------------*/#include <stdio.h>#include <stdlib.h>#include "spblas.h"double resid (int, double *, double *);int main(int argc, char *argv[]){/* Initialize the test matrices (one lower triangular, one upper) */double a[]= {1, 0, 0, 0, 1, 0, 0, 0, 1, /* All of matrix A */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,-13,14,15, 16,17,18, 1, 4, 7, 2, 5, 8, 3, 6, 9, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, -1, 2, 3, 4,-5, 6, 7, 8,-9, 10,-13,16, 11,14,17, 12,15,18, -1, 4, 7, 2,-5, 8, 3, 6,-9, 1, 0, 0, 0, 1, 0, 0, 0, 1};double ka[]={0, 0, 0, 0, 0, 0, 0, 0, 0, /* All of matrix skew(A) */ -1, -2,-3, -4,-5,-6, -7,-8,-9, /* Diagonal set to zero */ -10,-11,-12,13,-14,-15,-16,-17,-18, /* And upper triangle negated */ 1, 4, 7, 2, 5, 8, 3, 6, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,-2,-3, -4, 5,-6, -7,-8, 9, 10,-13,16, 11,14,17, 12,15,18, -1, 4, 7, 2,-5, 8, 3, 6,-9, 0, 0, 0, 0, 0, 0, 0, 0, 0 };int bindx[]={1,2,4,1,2,3,4,1,3,4};int bpntrb[]={1,4,6,8};int bpntre[]={4,6,8,11};double la[]= {1, 0, 0, 0, 1, 0, 0, 0, 1, /* lower triangular part */ 1, 4, 7, 2, 5, 8, 3, 6, 9, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 10,-13,16, 11,14,17, 12,15,18, -1, 4, 7, 2,-5, 8, 3, 6,-9, 1, 0, 0, 0, 1, 0, 0, 0, 1};int lbindx[]={1,1,2,3,1,3,4};int lbpntrb[]={1,2,4,5};int lbpntre[]={2,4,5,8};double ua[]= {1, 0, 0, 0, 1, 0, 0, 0, 1, /* upper triangular part */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,-13,14,15, 16,17,18, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, -1, 2, 3, 4,-5, 6, 7, 8,-9, 1, 0, 0, 0, 1, 0, 0, 0, 1};int ubindx[]={1,2,4,2,3,4,4};int ubpntrb[]={1,4,5,7};int ubpntre[]={4,5,7,8};double b[]={1,2,3,4,5,6,7,8,9,10,11,12, 1,2,3,4,5,6,7,8,9,10,11,12};double c[]={1,2,3,4,5,6,7,8,9,10,11,12, 1,2,3,4,5,6,7,8,9,10,11,12};double d[]={1,2,3,4,5,6,7,8,9,10,11,12, 1,2,3,4,5,6,7,8,9,10,11,12};double check[]={1,2,3,4,5,6,7,8,9,10,11,12, 1,2,3,4,5,6,7,8,9,10,11,12};int mb=4, kb=4, lb=3, m=12, ldb=12, ldc=12;/* Begin description for rectangular matrix */double ra[]= {1, 0, 0, 0, 1, 0, 0, 0, 1, /* All of matrix RA */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,-13,14,15, 16,17,18, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 4, 7, 2, 5, 8, 3, 6, 9, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, -1, 2, 3, 4,-5, 6, 7, 8,-9, 1, 0, 0, 0, 1, 0, 0, 0, 1, 10,-13,16, 11,14,17, 12,15,18, -1, 4, 7, 2,-5, 8, 3, 6,-9, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1};int rbindx[]={1,2,4,5,1,2,5,3,4,5,1,3,4,5};int rbpntrb[]={1,5,8,11};int rbpntre[]={5,8,11,15};int rmb=4, rkb=5, rlb=3, rm=12, rldb=15, rldc=15;double rb[]={1,2,3,4,5,6,7,8,9,10,11,12,1,1,1, 1,2,3,4,5,6,7,8,9,10,11,12,1,1,1};double rc[]={1,2,3,4,5,6,7,8,9,10,11,12,1,1,1, 1,2,3,4,5,6,7,8,9,10,11,12,1,1,1};double rd[]={1,2,3,4,5,6,7,8,9,10,11,12,1,1,1, 1,2,3,4,5,6,7,8,9,10,11,12,1,1,1};double rcheck[]={1,2,3,4,5,6,7,8,9,10,11,12,1,1,1, 1,2,3,4,5,6,7,8,9,10,11,12,1,1,1};double rsumb[]={22,26,30};/* end of description for rectangular matrix */int i,j;int transa, n, unitd, lwork;int descra[9];int errcount=0;double alpha;double beta;double zero=0.0;double error;double tolerance=.00001;double *work;work = (double *) malloc(30*sizeof(double));lwork = 30;/* Get input: alpha and beta */if (argc != 3 ) { printf("Usage: %s alpha beta \n", argv[0]); exit(1);}alpha = (double) atof(argv[1]);beta = (double) atof(argv[2]);descra[2] = 1;descra[3] = 1;descra[4] = 1;printf("-----------------------------------------------------\n");printf(" alpha = %e, beta = %e \n",alpha, beta);printf("-----------------------------------------------------\n");for (n=1;n!=3;n++) { /* loop on columns in C */ printf("*** n = %d ***\n",n); /* (test vector and matrix routines) */ /* First, test general matrices */ printf(" General matrices:\n"); /* Testing rectangular matrices */ printf(" rectangular\n"); descra[0] = 0; descra[1] = 1; /* ignored */ for (i=0;i!=m;i++) /* Initialize c */ for (j=0;j!=n;j++) c[j*m+i] = i+1; transa = 0; dbsrmm( transa, rmb, n, rkb, alpha, descra, ra, rbindx, rbpntrb, rbpntre, rlb, rb, rldb, beta, c, ldc, work, lwork); for (i=0;i!=n*m;i++) d[i] = c[i] - alpha; for (i=0;i!=m;i++) /* Initialize c */ for (j=0;j!=n;j++) c[j*m+i] = i+1;/* Call mat-mult with explicit symmtric matrix */ transa = 0; dbsrmm( transa, mb, n, kb, alpha, descra, a, bindx, bpntrb, bpntre, lb, b, ldb, beta, c, ldc, work, lwork); error = resid(n*m, d, c); if ( error >= tolerance ){ errcount++; printf("Error for rectangular matmult (no transpose)"); printf("n = %d.\n",n); printf("Residual: %10.6f \n",error); for (i=0;i!=n*m;i++) printf("%6.2f %6.2f\n",d[i], c[i]); } for (i=0;i!=m;i++) /* Initialize rc */ for (j=0;j!=n;j++) rc[j*(m+lb)+i] = i+1; for (i=m;i!=m+lb;i++) /* Initialize rc */ for (j=0;j!=n;j++) rc[j*(m+lb)+i] = 1; transa = 1; dbsrmm( transa, rmb, n, rkb, alpha, descra, ra, rbindx, rbpntrb, rbpntre, rlb, b, ldb, beta, rc, rldc, work, lwork); error = resid(m, c, rc); for (j=0;j<lb;j++) error += alpha*rsumb[j] + beta - rc[m+j]; if ( error >= tolerance ){ errcount++; printf("Error for rectangular matmult (transpose)"); printf("n = %d.\n",n); printf("Residual: %10.6f \n",error); } descra[0] = 0; descra[1] = 1; /* lower triangular matrix */ printf(" lower triangular\n"); for (i=0;i!=m;i++) /* Initialize c */ for (j=0;j!=n;j++) c[j*m+i] = i+1;/* Call triangular mat-mult with lower triangular matrix */ transa = 0; dbsrmm( transa, mb, n, kb, alpha, descra, la, lbindx, lbpntrb, lbpntre, lb, b, ldb, beta, c, ldc, work, lwork); for (i=0;i!=n*m;i++) d[i] = c[i]; descra[1] = 2; /* upper triangular matrix */ printf(" upper triangular\n"); for (i=0;i!=m;i++) for (j=0;j!=n;j++) c[j*m+i] = i+1;/* Call mat-mult with upper triangular matrix: */ transa = 1;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -