⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dtvbrmm.c

📁 用于求解大型稀疏线性方程组Ax=b的数值计算库.
💻 C
📖 第 1 页 / 共 2 页
字号:
/*-------------------------------------------------------||  NIST SPARSE BLAS v. 0.9 (Sat Jul 6 14:27:21 EDT 1996) ||                                                        ||  Authors:                                              ||     Karin A. Remington and Roldan Pozo                 ||     National Institute of Standards and Technology     ||                                                        ||  Based on the interface standard proposed in:          | |   "A Revised Proposal for a Sparse BLAS Toolkit" by    ||    S. Carney and K. Wu -- University of Minnesota      ||    M. Heroux and G. Li -- Cray Research                |  |    R. Pozo and K.A. Remington -- NIST                  ||                                                        ||  Contact:                                              ||     Karin A. Remington, email: kremington@nist.gov     |--------------------------------------------------------*/#include <stdio.h>#include <stdlib.h>#include "spblas.h"double resid (int, double *, double *);int main(int argc, char *argv[]){/* Initialize the test matrices (one lower triangular, one upper) */double dv[]={.5, 0,  0,-.5,             1, 0, 0,  0, 1, 0,  0, 0, 1,              1,              1, 0, 0,  0, 1, 0,  0, 0, 1,              -.25, 0,  0, .25};double diag[]={.5,-.5,1,1,1,1,1,1,1,-.25,.25};double a[]={1, 0,  0, 1,                        /* All of matrix A */            1, 2,            -1, 0,  1, -1,            1, 0, 0,  0, 1, 0,  0, 0, 1,             3, 4, 5,            1, 2,            3, 4, 5,            1,             6, 7, 8,            6, 7, 8,             1, 0, 0,  0, 1, 0,  0, 0, 1,             -1, 1,  0, -1,            1, 0,  0, 1};double ka[]={0, 0,  0, 0,                        /* All of matrix skew(A) */            -1, -2,                              /* Diagonal set to zero  */            1, 0,  -1, 1,                        /* And upper triangle negated */            0, 0, 0,  0, 0, 0,  0, 0, 0,             -3, -4, -5,            1, 2,            3, 4, 5,            0,             -6, -7, -8,            6, 7, 8,             0, 0, 0,  0, 0, 0,  0, 0, 0,             -1, 1,  0, -1,            0, 0,  0, 0};int indx[]={1,5,7,11,20,23,25,28,29,32,35,44,48,52};int bindx[]={1,3,5,2,3,1,2,3,4,3,4,1,5};int rpntr[]={1,3,6,7,10,12};int cpntr[]={1,3,6,7,10,12};int bpntrb[]={1,4,6,10,12};int bpntre[]={4,6,10,12,14};double la[]={1, 0,  0, 1,                     /* lower triangular part */            1, 0, 0,  0, 1, 0,  0, 0, 1,             1, 2,            3, 4, 5,            1,             6, 7, 8,            1, 0, 0,  0, 1, 0,  0, 0, 1,           -1, 1,  0, -1,            1, 0,  0, 1};int lindx[]={1,5,14,16,19,20,23,32,36,40};int lbindx[]={1,2,1,2,3,3,4,1,5};int lrpntr[]={1,3,6,7,10,12};int lcpntr[]={1,3,6,7,10,12};int lbpntrb[]={1,2,3,6,8};int lbpntre[]={2,3,6,8,10};double ua[]={1, 0,  0, 1,                     /* upper triangular part */             1, 2,             -1, 0,  1, -1,             1, 0, 0,  0, 1, 0,  0, 0, 1,              3, 4, 5,             1,              6, 7, 8,             1, 0, 0,  0, 1, 0,  0, 0, 1,              1, 0, 0, 1};int uindx[]={1,5,7,11,20,23,24,27,36,40};int ubindx[]={1,3,5,2,3,3,4,4,5};int urpntr[]={1,3,6,7,10,12};int ucpntr[]={1,3,6,7,10,12};int ubpntrb[]={1,4,6,8,9};int ubpntre[]={4,6,8,9,10};double b[]={1,2,3,4,5,6,7,8,9,10,11,            1,2,3,4,5,6,7,8,9,10,11};double c[]={1,2,3,4,5,6,7,8,9,10,11,            1,2,3,4,5,6,7,8,9,10,11};double d[]={1,2,3,4,5,6,7,8,9,10,11,            1,2,3,4,5,6,7,8,9,10,11};double check[]={1,2,3,4,5,6,7,8,9,10,11,            1,2,3,4,5,6,7,8,9,10,11};int mb=5, kb=5, m=11, ldb=11, ldc=11;double ra[]={1, 0,  0, 1,                        /* All of matrix RA */            1, 2,            -1, 0,  1, -1,            1, 1,            1, 0, 0,  0, 1, 0,  0, 0, 1,             3, 4, 5,            1, 1, 1,            1, 2,            3, 4, 5,            1,             6, 7, 8,            1,             6, 7, 8,             1, 0, 0,  0, 1, 0,  0, 0, 1,             1, 1, 1,            -1, 1,  0, -1,            1, 0,  0, 1,            1, 1};int rindx[]={1,5,7,11,13,22,25,28,30,33,34,37,38,41,50,53,57,61};int rbindx[]={1,3,5,6,2,3,6,1,2,3,4,6,3,4,6,1,5,6};int rrpntr[]={1,3,6,7,10,12};int rcpntr[]={1,3,6,7,10,12,13};int rbpntrb[]={1,5,8,13,16};int rbpntre[]={5,8,13,16,19};double rb[]={1,2,3,4,5,6,7,8,9,10,11,1,            1,2,3,4,5,6,7,8,9,10,11,1};double rc[]={1,2,3,4,5,6,7,8,9,10,11,1,            1,2,3,4,5,6,7,8,9,10,11,1};double rd[]={1,2,3,4,5,6,7,8,9,10,11,1,            1,2,3,4,5,6,7,8,9,10,11,1};double rcheck[]={1,2,3,4,5,6,7,8,9,10,11,1,            1,2,3,4,5,6,7,8,9,10,11,1};int rmb=5, rkb=6, rm=11, rldb=12, rldc=12;double rsumb = 66;int i,j;int transa, n, unitd, lwork;int descra[9];int errcount=0;double alpha;double beta;double zero=0.0;double error;double tolerance=.00001;double *work;work = (double *) malloc(24*sizeof(double));lwork = 24;/* Get input: alpha and beta */if (argc != 3 ) {   printf("Usage:   %s alpha beta \n", argv[0]);   exit(1);}alpha = (double) atof(argv[1]);beta = (double) atof(argv[2]);descra[2] = 1;descra[3] = 1;descra[4] = 1;printf("-----------------------------------------------------\n");printf("  alpha = %e, beta = %e  \n",alpha, beta);printf("-----------------------------------------------------\n");for (n=1;n!=3;n++) {                      /* loop on columns in C */      printf("*** n = %d ***\n",n);       /* (test vector and matrix routines) */                                          /* First, test general matrices */      printf("   General matrices:\n");                                               /* Testing rectangular matrices */      printf("      rectangular\n");      descra[0] = 0;      descra[1] = 1;                      /* ignored  */      for (i=0;i!=m;i++)                  /* Initialize c */        for (j=0;j!=n;j++)          c[j*m+i] = i+1;      transa = 0;      dvbrmm( transa, rmb, n, rkb, alpha, descra, ra,              rindx, rbindx, rrpntr, rcpntr, rbpntrb, rbpntre, rb, rldb,              beta, c, ldc, work, lwork);      for (i=0;i!=n*m;i++)         d[i] = c[i] - alpha;      for (i=0;i!=m;i++)                  /* Initialize c                    */        for (j=0;j!=n;j++)          c[j*m+i] = i+1;/* Call mat-mult with explicit symmtric matrix            */      transa = 0;      dvbrmm( transa, mb, n, kb, alpha, descra, a,              indx, bindx, rpntr, cpntr, bpntrb, bpntre, b, ldb,              beta, c, ldc, work, lwork);      error = resid(n*m, d, c);      if ( error >= tolerance ){         errcount++;         printf("Error for rectangular matmult (no transpose)");         printf("n = %d.\n",n);         printf("Residual: %10.6f \n",error);         for (i=0;i!=n*m;i++)           printf("%6.2f  %6.2f\n",d[i], c[i]);      }      for (i=0;i!=m;i++)                  /* Initialize rc */        for (j=0;j!=n;j++)          rc[j*(m+1)+i] = i+1;        for (j=0;j!=n;j++)          rc[j*(m+1)+m] = 1;      transa = 1;      dvbrmm( transa, rmb, n, rkb, alpha, descra, ra,              rindx, rbindx, rrpntr, rcpntr, rbpntrb, rbpntre, b, ldb,              beta, rc, rldc, work, lwork);      error = resid(m, c, rc);      error += alpha*rsumb + beta - rc[m];      if ( error >= tolerance ){         errcount++;         printf("Error for rectangular matmult (transpose)");         printf("n = %d.\n",n);         printf("Residual: %10.6f \n",error);         for (i=0;i!=m;i++)           printf("%6.2f  %6.2f\n",c[i], rc[i]);         printf("%6.2f  %6.2f\n",alpha*rsumb+beta, rc[m]);      }           descra[0] = 0;      descra[1] = 1;                      /* lower triangular matrix */      printf("      lower triangular\n");      for (i=0;i!=m;i++)                  /* Initialize c */        for (j=0;j!=n;j++)          c[j*m+i] = i+1;/* Call triangular mat-mult with lower triangular matrix     */      transa = 0;      dvbrmm( transa, mb, n, kb, alpha, descra, la,

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -