📄 dtvbrmm.c
字号:
/*-------------------------------------------------------|| NIST SPARSE BLAS v. 0.9 (Sat Jul 6 14:27:21 EDT 1996) || || Authors: || Karin A. Remington and Roldan Pozo || National Institute of Standards and Technology || || Based on the interface standard proposed in: | | "A Revised Proposal for a Sparse BLAS Toolkit" by || S. Carney and K. Wu -- University of Minnesota || M. Heroux and G. Li -- Cray Research | | R. Pozo and K.A. Remington -- NIST || || Contact: || Karin A. Remington, email: kremington@nist.gov |--------------------------------------------------------*/#include <stdio.h>#include <stdlib.h>#include "spblas.h"double resid (int, double *, double *);int main(int argc, char *argv[]){/* Initialize the test matrices (one lower triangular, one upper) */double dv[]={.5, 0, 0,-.5, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, -.25, 0, 0, .25};double diag[]={.5,-.5,1,1,1,1,1,1,1,-.25,.25};double a[]={1, 0, 0, 1, /* All of matrix A */ 1, 2, -1, 0, 1, -1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 3, 4, 5, 1, 2, 3, 4, 5, 1, 6, 7, 8, 6, 7, 8, 1, 0, 0, 0, 1, 0, 0, 0, 1, -1, 1, 0, -1, 1, 0, 0, 1};double ka[]={0, 0, 0, 0, /* All of matrix skew(A) */ -1, -2, /* Diagonal set to zero */ 1, 0, -1, 1, /* And upper triangle negated */ 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, -4, -5, 1, 2, 3, 4, 5, 0, -6, -7, -8, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, -1, 0, 0, 0, 0};int indx[]={1,5,7,11,20,23,25,28,29,32,35,44,48,52};int bindx[]={1,3,5,2,3,1,2,3,4,3,4,1,5};int rpntr[]={1,3,6,7,10,12};int cpntr[]={1,3,6,7,10,12};int bpntrb[]={1,4,6,10,12};int bpntre[]={4,6,10,12,14};double la[]={1, 0, 0, 1, /* lower triangular part */ 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 3, 4, 5, 1, 6, 7, 8, 1, 0, 0, 0, 1, 0, 0, 0, 1, -1, 1, 0, -1, 1, 0, 0, 1};int lindx[]={1,5,14,16,19,20,23,32,36,40};int lbindx[]={1,2,1,2,3,3,4,1,5};int lrpntr[]={1,3,6,7,10,12};int lcpntr[]={1,3,6,7,10,12};int lbpntrb[]={1,2,3,6,8};int lbpntre[]={2,3,6,8,10};double ua[]={1, 0, 0, 1, /* upper triangular part */ 1, 2, -1, 0, 1, -1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 3, 4, 5, 1, 6, 7, 8, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1};int uindx[]={1,5,7,11,20,23,24,27,36,40};int ubindx[]={1,3,5,2,3,3,4,4,5};int urpntr[]={1,3,6,7,10,12};int ucpntr[]={1,3,6,7,10,12};int ubpntrb[]={1,4,6,8,9};int ubpntre[]={4,6,8,9,10};double b[]={1,2,3,4,5,6,7,8,9,10,11, 1,2,3,4,5,6,7,8,9,10,11};double c[]={1,2,3,4,5,6,7,8,9,10,11, 1,2,3,4,5,6,7,8,9,10,11};double d[]={1,2,3,4,5,6,7,8,9,10,11, 1,2,3,4,5,6,7,8,9,10,11};double check[]={1,2,3,4,5,6,7,8,9,10,11, 1,2,3,4,5,6,7,8,9,10,11};int mb=5, kb=5, m=11, ldb=11, ldc=11;double ra[]={1, 0, 0, 1, /* All of matrix RA */ 1, 2, -1, 0, 1, -1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 3, 4, 5, 1, 1, 1, 1, 2, 3, 4, 5, 1, 6, 7, 8, 1, 6, 7, 8, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, -1, 1, 0, -1, 1, 0, 0, 1, 1, 1};int rindx[]={1,5,7,11,13,22,25,28,30,33,34,37,38,41,50,53,57,61};int rbindx[]={1,3,5,6,2,3,6,1,2,3,4,6,3,4,6,1,5,6};int rrpntr[]={1,3,6,7,10,12};int rcpntr[]={1,3,6,7,10,12,13};int rbpntrb[]={1,5,8,13,16};int rbpntre[]={5,8,13,16,19};double rb[]={1,2,3,4,5,6,7,8,9,10,11,1, 1,2,3,4,5,6,7,8,9,10,11,1};double rc[]={1,2,3,4,5,6,7,8,9,10,11,1, 1,2,3,4,5,6,7,8,9,10,11,1};double rd[]={1,2,3,4,5,6,7,8,9,10,11,1, 1,2,3,4,5,6,7,8,9,10,11,1};double rcheck[]={1,2,3,4,5,6,7,8,9,10,11,1, 1,2,3,4,5,6,7,8,9,10,11,1};int rmb=5, rkb=6, rm=11, rldb=12, rldc=12;double rsumb = 66;int i,j;int transa, n, unitd, lwork;int descra[9];int errcount=0;double alpha;double beta;double zero=0.0;double error;double tolerance=.00001;double *work;work = (double *) malloc(24*sizeof(double));lwork = 24;/* Get input: alpha and beta */if (argc != 3 ) { printf("Usage: %s alpha beta \n", argv[0]); exit(1);}alpha = (double) atof(argv[1]);beta = (double) atof(argv[2]);descra[2] = 1;descra[3] = 1;descra[4] = 1;printf("-----------------------------------------------------\n");printf(" alpha = %e, beta = %e \n",alpha, beta);printf("-----------------------------------------------------\n");for (n=1;n!=3;n++) { /* loop on columns in C */ printf("*** n = %d ***\n",n); /* (test vector and matrix routines) */ /* First, test general matrices */ printf(" General matrices:\n"); /* Testing rectangular matrices */ printf(" rectangular\n"); descra[0] = 0; descra[1] = 1; /* ignored */ for (i=0;i!=m;i++) /* Initialize c */ for (j=0;j!=n;j++) c[j*m+i] = i+1; transa = 0; dvbrmm( transa, rmb, n, rkb, alpha, descra, ra, rindx, rbindx, rrpntr, rcpntr, rbpntrb, rbpntre, rb, rldb, beta, c, ldc, work, lwork); for (i=0;i!=n*m;i++) d[i] = c[i] - alpha; for (i=0;i!=m;i++) /* Initialize c */ for (j=0;j!=n;j++) c[j*m+i] = i+1;/* Call mat-mult with explicit symmtric matrix */ transa = 0; dvbrmm( transa, mb, n, kb, alpha, descra, a, indx, bindx, rpntr, cpntr, bpntrb, bpntre, b, ldb, beta, c, ldc, work, lwork); error = resid(n*m, d, c); if ( error >= tolerance ){ errcount++; printf("Error for rectangular matmult (no transpose)"); printf("n = %d.\n",n); printf("Residual: %10.6f \n",error); for (i=0;i!=n*m;i++) printf("%6.2f %6.2f\n",d[i], c[i]); } for (i=0;i!=m;i++) /* Initialize rc */ for (j=0;j!=n;j++) rc[j*(m+1)+i] = i+1; for (j=0;j!=n;j++) rc[j*(m+1)+m] = 1; transa = 1; dvbrmm( transa, rmb, n, rkb, alpha, descra, ra, rindx, rbindx, rrpntr, rcpntr, rbpntrb, rbpntre, b, ldb, beta, rc, rldc, work, lwork); error = resid(m, c, rc); error += alpha*rsumb + beta - rc[m]; if ( error >= tolerance ){ errcount++; printf("Error for rectangular matmult (transpose)"); printf("n = %d.\n",n); printf("Residual: %10.6f \n",error); for (i=0;i!=m;i++) printf("%6.2f %6.2f\n",c[i], rc[i]); printf("%6.2f %6.2f\n",alpha*rsumb+beta, rc[m]); } descra[0] = 0; descra[1] = 1; /* lower triangular matrix */ printf(" lower triangular\n"); for (i=0;i!=m;i++) /* Initialize c */ for (j=0;j!=n;j++) c[j*m+i] = i+1;/* Call triangular mat-mult with lower triangular matrix */ transa = 0; dvbrmm( transa, mb, n, kb, alpha, descra, la,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -