📄 adfig03.m
字号:
% adfig03 -- Adapt Figure 03: Wavelet Shrinkage of the Four Noisy Signals
%
% Here we aapply a specific thresholding rule to the
% four noisy signals depicted in Figure 2.
%
% The procedure for DeNoising:
% 1. Transform to Wavelet Domain, Using Nearly Symmetric Wavelet
% with 8 vanishing moments.
% 2. Apply a soft thresholding nonlinearity, with threshold selected
% by the Stein's Unbiased Risk Estimate (SURE) in the interval
% [0,sqrt{2 log(n)}]
% 3. Transform back to the signal domain.
%
% The reconstructions suppress the noise, while preserving the sharp structure
% in the neighborhood of the highly-variable spatial components.
%
global L qmf
global yblocks ybumps yheavi yDoppler
global t
%
[xhat,xw] = WaveShrink(yblocks,'Hybrid',L,qmf);
versaplot(221,t,xhat,[],' 3 (a) SUREShrink[Blocks]',[],[])
%
[xhat,xw] = WaveShrink(ybumps,'Hybrid',L,qmf);
versaplot(222,t,xhat,[],' 3 (b) SUREShrink[Bumps]',[],[])
%
[xhat,xw] = WaveShrink(yheavi,'Hybrid',L,qmf);
versaplot(223,t,xhat,[],' 3 (c) SUREShrink[HeaviSine]',[],[])
%
[xhat,xw] = WaveShrink(yDoppler,'Hybrid',L,qmf);
versaplot(224,t,xhat,[],' 3 (d) SUREShrink[Doppler]',[],[])
%% Part of Wavelab Version 850% Built Tue Jan 3 13:20:41 EST 2006% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail wavelab@stat.stanford.edu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -