📄 toufig03.m
字号:
% toufig03 -- Tour Figure 03: Wavelet Shrinkage of the Four Noisy Signals
%
% Here we aapply a specific thresholding rule to the
% four noisy signals depicted in Figure 5.
%
% The procedure for DeNoising:
% 1. Transform to Wavelet Domain, Using Nearly Symmetric Wavelet
% with 8 vanishing moments.
% 2. Apply a soft thresholding nonlinearity, with threshold set to
% sqrt{2 log(n)}
% 3. Transform back to the signal domain.
%
% The reconstructions suppress the noise, while preserving the sharp structure
% in the neighborhood of the highly-variable spatial components.
%
global yblocks ybumps yheavi yDoppler
global t
%
QMF_Filter = MakeONFilter('Symmlet',8);
L = 5;
%
[xhblocks] = WaveShrink(yblocks, 'Visu',L,QMF_Filter);
[xhbumps] = WaveShrink(ybumps, 'Visu',L,QMF_Filter);
[xhheavi] = WaveShrink(yheavi, 'Visu',L,QMF_Filter);
[xhDoppler] = WaveShrink(yDoppler,'Visu',L,QMF_Filter);
%
% clf;
versaplot(221,t,xhblocks, [],' 3 (a) VisuShrink[yBlocks] ' ,[],[])
versaplot(222,t,xhbumps, [],' 3 (b) VisuShrink[yBumps] ' ,[],[])
versaplot(223,t,xhheavi, [],' 3 (c) VisuShrink[yHeaviSine] ',[],[])
versaplot(224,t,xhDoppler,[],' 3 (d) VisuShrink[yDoppler] ' ,[],[])
%Revision History
% 10/1/05 AM Changing the name of the variable QMF
%% Part of Wavelab Version 850% Built Tue Jan 3 13:20:42 EST 2006% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail wavelab@stat.stanford.edu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -