📄 scfig27.m
字号:
% scfig27 -- Short Course 27: Linear Smoothing of Cauchy Noise
%
% Here we show the results of ``linear de-noising'':
%
% (i) set to zero all the wavelet coefficients at the finest scales of
% analysis;
% (ii) reconstruct from the modified coefficient set
%
% Ordinarily, this acts as a smoothing operator.
%
% With Cauchy data it has very little effect; the sinusoidal nature of
% the signal is still hidden after smoothing.
%
global ySine
%
% clf;
HaarQMF = MakeONFilter('Haar');
%
wc = FWT_PO(ySine(1:512),1,HaarQMF);
wc(dyad(8)) = 0 .* wc(dyad(8));
xhat = IWT_PO(wc,1,HaarQMF);
versaplot(221,[],xhat,[],' 27 (a) Linear Recovery; Kill Dyad Level 8',[],[]);
%
wc(dyad(8)) = 0 .* wc(dyad(8));
xhat = IWT_PO(wc,1,HaarQMF);
versaplot(222,[],xhat,[],' 27 (b) Linear Recovery; Kill Dyad Levels 7 & 8',[],[]);
%% Part of Wavelab Version 850% Built Tue Jan 3 13:20:42 EST 2006% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail wavelab@stat.stanford.edu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -