📄 scfig25.m
字号:
% scfig25 -- Short Course 25: DeNoising a segmented transform
%
% Here we show the results of DeNoising by applying thresholding
% to the empirical wavelet coefficients in an ideally-segmented
% wavelet transform (Panel d); for comparison we also show ordinary
% wavelet threshold DeNoising (Panel c).
%
afine = zeros(1,1024); it = 37 * 1024 /128 ;
afine(1:it) = ((1:it) - .5)./it;
afine((it+1):1024) = (((it+1):1024) - (it+1.5)) ./ (1024-it);
afine = afine * 5;
E2 = MakeAIBdryFilter(2);
F2 = MakeAIFilter(2);
t = 37 ./128;
%
y = afine + WhiteNoise(afine);
% clf;
ax= [0 1000 -5 10];
versaplot(221,[],afine,[],' 25 (a) Signal',ax,[])
versaplot(222,[],y, [],' 25 (b) Noisy' ,ax,[])
%
QMF_Filter = MakeONFilter('Coiflet',3);
xhat = WaveShrink(y,'Visu',4,QMF_Filter);
%
versaplot(223,[],xhat,[],' 25 (c) Ordinary Periodized Wavelet Denoising',ax,[])
%
L=4; D=2;
wc = FWT_SegAI(y,L,D,F2,E2,t);
shc= MultiVisu(wc,L);
sy = IWT_SegAI(shc,L,D,F2,E2,t);
%
versaplot(224,[],sy,[],' 25 (d) Segmented Denoising',ax,[])
% Revision History
% 10/1/05 AM Name of the variable QMF is changed to
% QMF_Filter
%% Part of Wavelab Version 850% Built Tue Jan 3 13:20:42 EST 2006% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail wavelab@stat.stanford.edu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -