📄 scfig17.m
字号:
% scfig17 -- Short Course 17: Noisy Differentiation by Ideal Fourier Damping
%
% This figure displays the results of an ideal Fourier Damping
% for deconvolution, in which each frequency is damped optimally
% based on its signal-to-noise ratio. For comparison, the Naive
% reconstruction based on simple differencing is also shown.
%
% Unlike the wavelet thresholding of Figure 15, ideal Fourier
% damping is not able to suppress noise while preserving resolution.
%
global Bumps
%
sig = cumsum(Bumps) + WhiteNoise(Bumps);
x = diff([0 sig]);
%
z = fft(x);
w = fft(Bumps);
omega = 2 * pi .* (0:(length(w)-1)) ./ length(w);
sigma2 = length(x) .* 4 .* sin(omega/2).^2;
wate = abs(w).^2 ./ (abs(w).^2 + sigma2);
whate = wate .* z;
BumpsHat= real(ifft(whate));
%
% clf;
s = linspace(0,1,length(x));
subplot(221); plot(s,Bumps) ; title('17 (a) Object')
subplot(222); plot(s,sig); title('17 (b) Noisy Cumulative')
subplot(223); plot(s,x) ; title('17 (c) Difference of Noisy Cumulative')
subplot(224); plot(s,BumpsHat) ; title('17 (d) Ideal Fourier Damping')
%% Part of Wavelab Version 850% Built Tue Jan 3 13:20:42 EST 2006% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail wavelab@stat.stanford.edu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -