📄 scfig02.asv
字号:
% scfig02 -- Short Course 02: Noisy Deconvolution
%
% In this example, the object ``Bumps'' is convolved with a recursive
% filter that blurs out the sharp structure; and then noise is added.
% (panels a,b)
%
% The deconvolution problem is ill-posed, in that when we apply the
% inverse filter, we get an object which is extremely noisy and has
% no real resemblance to the original object. (panel c)
%
% When we apply thresholding in the wavelet domain, with thresholds
% specially chosen to adapt to the structure of the deconvolution
% problem, we get a reconstruction which is nearly noise free and which
% also preserves the structure of the Bumps object. (panel d)
%
global Bumps
global wcNaive wcObject wcDeNoised
global t
global alf
%
N2 = length(Bumps)/2;
x = [ zeros(1,N2) Bumps zeros(1,N2)];
sx = filter(1,[1 ((-2 * alf)) (alf^2)],x);
nsx = sx + WhiteNoise(sx);
dnsx = filter([1 ((-2 * alf)) (alf^2)],1,nsx);
%
QMF_Filter = MakeONFilter('Coiflet',2);
wcNaive = FWT_PO(dnsx, 5, QMF_Filter);
wcDeNoised = MultiMAD(wcNaive,5);
recx = IWT_PO(wcDeNoised,5,QMF_Filter);
%
wcObject = FWT_PO(x,5,QMF_Filter);
%
% clf;
ts = [ linspace(-.5,(-1) ./ (2*N2), N2) t linspace(1 + 1 ./ (2*N2), 1.5, N2)];
subplot(221); plot(ts,x); title('2 (a) Object')
subplot(222); plot(ts,nsx); title('2 (b) Noisy Blurred')
subplot(223); plot(ts,dnsx); title('2 (c) Naive DeBlurred')
subplot(224); plot(ts,recx); title('2 (d) WVD Reconstruction')
%
% Part of WaveLab Version 802
% Built Sunday, October 3, 1999 8:52:27 AM
% This is Copyrighted Material
% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@stat.stanford.edu
%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -