📄 scfig28.m
字号:
% scfig28 -- Short Course 28: Robust De-Noising
%
% Here we apply a robust wavelet transform where ``low-pass filtering''
% is replaced by applying medians of 3 in a triadic multi-resolution
% analysis.
%
% The nonlinear smoothing operator which results from setting to zero those
% coefficients at the finest scales has a pronounced noise-killing effect.
% It restores the underlying sinusoidal character of the signal.
%
%
global ySine SineSig % Am 10/05
%
SineSig = 4 .* sin( (1:729) ./40 ); %Am 10/05
z = WhiteNoise(SineSig) ./ WhiteNoise(SineSig); % Cauchy = Z/Z
ySine = SineSig+z; %AM 10/05
%
wc = FHT_Med(ySine);
wc(triad(6)) = 0 .* wc(triad(6)) ;
xhat6 = IHT_Med(wc);
%
ax = [0 length(ySine) -10 10];
versaplot(221,[],xhat6,[],' 28(a) (Nonlinear MRA) Kill Triad Level 6',ax,[])
%
wc(triad(5)) = 0 .* wc(triad(5)) ;
xhat = IHT_Med(wc);
versaplot(222,[],xhat,[],' 28(b) (Nonlinear MRA) Kill Triad Levels 5 & 6',ax,[])
%
wc(triad(4)) = 0 .* wc(triad(4)) ;
xhat = IHT_Med(wc);
versaplot(223,[],xhat,[],' 28(c) (Nonlinear MRA) Kill Triad Levels 4, 5 & 6',ax,[])
%% Part of Wavelab Version 850% Built Tue Jan 3 13:20:42 EST 2006% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail wavelab@stat.stanford.edu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -