📄 scfig23.m
字号:
% scfig23 -- Short Course 23: Compare Four DeNoising methods
%
% Here we compare the use of thresholding in four different transform
% domains:
%
% ``Fourier'' -- discrete cosine transform
% ``Wavelet'' -- nearly symmetric wavelet with 8 vanishing moments
% ``Wavelet Packet'' -- adaptively selected Wavelet Packet basis
% ``Cosine Packet'' -- adaptively selected Cosine Packet basis
%
% In each case, the noisy coefficients in the transform domain are
% subjected to thresholding, and the thresholded coefficients are
% inverse transformed to restore the object in question.
%
% To the author's eye, the Cosine Packet basis does the best job. Certainly
% the results are much better than the wavelets basis.
%
global yMish tt
%
% clf;
ax = [0. .25 -20 20];
QSymm8 = MakeONFilter('Symmlet',8);
[n,J] = dyadlength(yMish);
thr = sqrt(2*log(n));
%
% dct-iv
%
c = dct_iv(yMish);
dc = c(1);
chat = SoftThresh(c,thr);
chat(1) = dc; % don't shrink DC component
xDCT = dct_iv(c);
versaplot(221,tt,xDCT,[],' 23 (a) Cosine Basis De-Noising',ax,[]);
%
% Wavelets
%
[xWave,wcWave] = WaveShrink(yMish,'Visu',6,QSymm8);
versaplot(222,tt,xWave,[],' 23 (b) Wavelet Basis De-Noising',ax,[]);
%
% Wavelet packet
%
xWP = WPDeNoise(yMish,6,QSymm8);
versaplot(223,tt,xWP ,[],' 23 (c) Wavelet Packet Basis De-Noising',ax,[]);
%
% Cosine packet
%
xCP = CPDeNoise(yMish,6,'Sine');
versaplot(224,tt,xCP ,[],' 23 (d) Cosine Packet Basis De-Noising',ax,[]);
%% Part of Wavelab Version 850% Built Tue Jan 3 13:20:42 EST 2006% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail wavelab@stat.stanford.edu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -