📄 scfig14.m
字号:
% scfig14 -- Short Course 14: Estimating Time Series Spectrum
%
% Here we illustrate the use of Wavelet Shrinkage in a time series setting.
% Our example is taken from Hong-Ye Gao's 1993 Ph.D. Thesis, U.C. Berkeley
% The example is constructed as follows.
% 1. Generate ARMA(24,1) Time Series having spectrum with poles near unit
% circle. This gives a log-spectrum with significant peaks.
% 2. Calculate the log-periodogram of the series; normalize it by the
% Wahba (1980) Variance-Stabilizing transform.
% 3. Apply Wavelet Shrinkage to the normalized log-periodogram
%
%
Fig14Filter = [1 -2.5216281 4.7715359 -7.9199915 11.9769211 -16.0778828 ...
20.6343346 -25.0531521 28.8738136 -31.8046265 34.0071373 ...
-34.7700272 34.3151321 -32.7861099 30.2861233 -26.7109356 ...
22.8838310 -18.7432098 14.5717688 -10.7177744 7.5322194 ...
-4.7226319 2.6807923 -1.3391306 0.5167125];
%
% 1. Generate ARMA Process
%
z = WhiteNoise(zeros(1,4096));
ser = filter(1,Fig14Filter,z) + .01 .* WhiteNoise(z); % Recursive Filter
ser = ser(2049:4096); % kill transients
%
% 2. Generate Log-o-Gram
%
[tg,g] = LogoGram(ser);
%
% 3. Wavelet Shrinkage
%
QMF_Filter = MakeONFilter('Symmlet',8);
[xh,wcoef] = WaveShrink(g,'Visu',7,QMF_Filter);
%
% 4. Display
%
% clf;
versaplot(211,tg, g,[],'14(a) LogoGram' ,[0 pi -5 10],[]);
versaplot(212,tg,xh,[],'14 (b) Wavelet Smoothed',[0 pi -5 10],[]);
% Revision History
% 10/1/05 AM Name of the variable QMF is changed to
% QMF_Filter
%% Part of Wavelab Version 850% Built Tue Jan 3 13:20:42 EST 2006% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail wavelab@stat.stanford.edu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -