📄 vdlfig09.m
字号:
% vdlfig09 -- Minimum Entropy Focusing: Evaluate minimum
%
% Here we experiment with using the wavelet transform to focus a blurry
% signal (i.e. one convolved with an autoregressive filter). By assigning
% a cost-functional to the fine-scale wavelet coefficients, we may evaluate
% this entropy over choices of the deblurring parameter and deblur by choosing
% the parameter corresponding to the minimum entropy.
%
global ent_min;
rho = .9;
qmf = MakeONFilter('Haar');
%
x = MakeSignal('Blocks',512);
y = filter(1,[1 ((-2 * rho)) (rho^2)],x);
%
ngrid = 21;
tau_grid = linspace(-1,1,ngrid);
for i=1:ngrid,
tau = tau_grid(i);
by = filter([1 ((-2 * tau)) (tau^2)],1,y);
%
nrm_by = norm(by);
%
wby = FWT_PO(by,3,qmf); wby = wby(9:512);
ent(i) = norm(wby,1) ;
end
%
plot(tau_grid,ent)
title('Figure 9: Entropy Profile')
xlabel('tau, Filter Parameter')
ylabel('Normalized Entropy')
%
[ent_min,imin] = min(ent);
[ent_max,imax] = max(ent);
tau_min = tau_grid(imin);
hold on; plot([tau_min tau_min], [ent_min ent_max], '-.'); hold off
axis([0 1 0 10^4])
%
% Copyright (c) 1995, Jonathan Buckheit and David Donoho.
% Prepared for ``WaveLab and Reproducible Research''
% for XV Recontres Franco-Belges symposium proceedings.
%
%% Part of Wavelab Version 850% Built Tue Jan 3 13:20:42 EST 2006% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail wavelab@stat.stanford.edu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -