📄 aifig4.m
字号:
% aifig4 -- The Dual Functions
%
% These functions are dual to the wavelets of the previous
% figure, in that integration of a function f against these
% functions gives the coefficients in the wavelet expansion
% using the corresponding AI wavelets.
%
global Fil2 Fil4 Fil6 Fil8
global EdgeFil2 EdgeFil4 EdgeFil6 EdgeFil8
%
nref = 5;
v = zeros(4,32);
kronecker = zeros(1,32);
kronecker(18) = 1;
% Order D=2
D = 2;
a = 2.* kronecker;
for k=(-D/2):(D/2),
a(17+2*k) = a(17+2*k) - Fil2(1 + D + 2*k);
a(18+2*k) = a(18+2*k) - Fil2(1 + D + 2*k);
end
% D, a
v(1,:) = a;
for j=1:nref,
a = [a ; a];
a = reshape(a,1,prod(size(a)));
end;
t = 16*(0:(length(a)-1)) ./ length(a) -8;
inx = (t >= -5) & (t < 5);
subplot(221);
plot(t(inx),a(inx)) ;
title('4(a) Dual AI Wavelet D=2')
D = 4;
a = 2 .* kronecker;
for k=(-D/2):(D/2),
a(17+2*k) = a(17+2*k) - Fil4(1 + D + 2*k);
a(18+2*k) = a(18+2*k) - Fil4(1 + D + 2*k);
end
% D, a
v(2,:) = a;
for j=1:nref,
a = [a ; a];
a = reshape(a,1,prod(size(a)));
end;
subplot(222);
plot(t(inx),a(inx)) ;
title('4(b) Dual, D=4')
D = 6;
a = 2 .* kronecker;
for k=(-D/2):(D/2),
a(17+2*k) = a(17+2*k) - Fil6(1 + D + 2*k);
a(18+2*k) = a(18+2*k) - Fil6(1 + D + 2*k);
end
% D, a
v(3,:) = a;
for j=1:nref,
a = [a ; a];
a = reshape(a,1,prod(size(a)));
end;
subplot(223);
plot(t(inx),a(inx)) ;
title('4(c) Dual, D=6')
D = 8;
a = 2.* kronecker;
for k=(-D/2):(D/2),
a(17+2*k) = a(17+2*k) - Fil8(1 + D + 2*k);
a(18+2*k) = a(18+2*k) - Fil8(1 + D + 2*k);
end
%D, a
v(4,:) = a;
for j=1:nref,
a = [a ; a];
a = reshape(a,1,prod(size(a)));
end;
t = 16*(0:(length(a)-1)) ./ length(a) -8;
subplot(224);
plot(t(inx),a(inx)) ;
title('4(d) Dual, D=8')
%% Part of Wavelab Version 850% Built Tue Jan 3 13:20:41 EST 2006% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail wavelab@stat.stanford.edu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -