📄 aifig7.m
字号:
% aifig7 -- Noisy Differentiation
%
% Here we illustrate the use of wavelets for noisy differentiation.
% (Panel a) displays object Bumps, (panel b) its noisy cumulative,
% and (Panel c) a naive inversion based on differencing.
%
% The naive inversion is very noisy and displays only a hint of the
% structure of the underlying function.
%
% We also display a wavelet-shrinkage reconstruction, in which noise is
% suppressed while the structure remains.
%
% The wavelet-shrinkage reconstruction goes as follows
%
% 1. Transform the naive reconstruction into the wavelet domain.
% 2. Apply level-dependent thresholds which scale inversely with
% resolution.
% 3. Return to the wavelet domain.
%
% Coiflets with 3 vanishing moments are used.
%
n = 2048;
t = (.5:(n-.5)) ./ n;
Bumps = MakeSignal('Bumps',n);
%
% Build Noisy Primitive
%
zBumps = cumsum(Bumps);
x = zBumps + rand(size(zBumps));
%
% Naive Reconstruction
%
z = diff([0 x]);
%
% Wavelet Shrinkage
%
QSymm6 = MakeONFilter('Symmlet',6);
w = FWT_PO(z, 5, QSymm6);
ws = InvShrink(w,5,4,1);
zrec = IWT_PO(ws,5,QSymm6);
%
% Display Results
subplot(221); plot(t,Bumps); title('7 (a) Object Bumps')
subplot(222); plot(t,x); title('7 (b) Noisy Primitive')
subplot(223); plot(t,z); title('7 (c) Naive Reconstruction via Differences')
subplot(224); plot(t,zrec); title('7 (d) Wavelet De-Noising Reconstruction')
%% Part of Wavelab Version 850% Built Tue Jan 3 13:20:41 EST 2006% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail wavelab@stat.stanford.edu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -