📄 mefig211.m
字号:
% mefig211 -- De-Noising "Ramp"; Segmented transform; ideal segmentation.
%
% In this display we show the viewer how one can use the segmented wavelet
% transform to de-noise an object. Ramp, with discontinuity at a known
% point tau, is buried in noise (panel a). The noisy data are then
% transformed using a segmented average-interpolating transform (panel b).
% The resulting wavelet coefficients are thresholded with a sqrt(2 log n)
% threshold (panel c) (no coefficients survive thresholding, except at
% coarsest scale). The transform back into the original domain gives the
% reconstruction (panel d).
%
% Note: This script computes objects required by script mefig212 to run.
%
global Ramp t n id
global yRamp SmoothRamp
global x % MRD 4/99
%
randn('seed',0);
yRamp = 5*Ramp + WhiteNoise(Ramp);
%
%clf;
subplot(221)
plot(x,yRamp); ax = axis;
title('2.11a Noisy Ramp')
%
L=4;
D=2;
F2 = MakeAIFilter(D);
E2 = MakeAIBdryFilter(D);
%
t = id /n;
swRamp = FWT_SegAI(yRamp ,L,D,F2,E2,t);
%
subplot(222)
PlotWaveCoeff(swRamp,L,.2);
xlabel('t'); ylabel('dyad');
title('2.11b SWT(Noisy Ramp) ')
%
%
shwRamp = MultiVisu(swRamp,L);
%
subplot(223)
PlotWaveCoeff(shwRamp,L,.2);
xlabel('t'); ylabel('dyad');
title('2.11c Threshold(SWT(Noisy Ramp)) ')
%
%
SmoothRamp = IWT_SegAI(shwRamp,L,D,F2,E2,t);
%
subplot(224)
plot(x,SmoothRamp); axis(ax)
title('2.11d Seg-De-Noise Ramp')
%
% Prepared for the paper Minimum Entropy Segmentation
% Copyright (c) 1994 David L. Donoho
%
%% Part of Wavelab Version 850% Built Tue Jan 3 13:20:41 EST 2006% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail wavelab@stat.stanford.edu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -