📄 mefig213.m
字号:
% mefig213 -- De-Noising "Cusp"; Segmented Transform; ideal segmentation.
%
% In this display we show the viewer how one can use the segmented wavelet
% transform to de-noise an object. Cusp, with discontinuity in
% derivative at a known point tau, is buried in noise (panel a). The
% noisy data are then transformed using a segmented average-interpolating
% transform (panel b). The resulting wavelet coefficients are
% thresholded with a sqrt(2 log n) threshold (panel c) (no coefficients
% survive thresholding, except at coarsest scale). The transform back
% into the original domain gives the reconstruction (panel d).
%
% Note -- this script makes calculations which are used later by mefig214.m
%
global Cusp
global yCusp SmoothCusp
global L
global t % MRD 4/99
global id n %AM 1-/05
%
object = 5*Cusp.^8;
randn('seed',1269879768);
yCusp = object + WhiteNoise(Cusp);
absc = (1:length(Cusp)) ./ length(Cusp);
%%
%clf;
subplot(221)
plot(absc,yCusp);
title('2.13a Noisy Cusp')
%
L=4; D=2; t=id/n; %AM 10/05
F2 = MakeAIFilter(D);
E2 = MakeAIBdryFilter(D);
swCusp = FWT_SegAI(yCusp ,L,D,F2,E2,t);
%
subplot(222);
PlotWaveCoeff(swCusp,L,0.);
xlabel('t'); ylabel('dyad');
title('2.13b SWT(Noisy Cusp) ')
%%
shwCusp = MultiVisu(swCusp,L);
%
subplot(223)
PlotWaveCoeff(shwCusp,L,0.);
xlabel('t'); ylabel('dyad');
title('2.13c Threshold(SWT(Noisy Cusp)) ')
%
SmoothCusp = IWT_SegAI(shwCusp,L,D,F2,E2,t);
subplot(224)
plot(absc,SmoothCusp); title('2.13d Seg-DeNoise[Cusp]')
%
% Prepared for the paper Minimum Entropy Segmentation
% Copyright (c) 1994 David L. Donoho
%
%% Part of Wavelab Version 850% Built Tue Jan 3 13:20:41 EST 2006% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail wavelab@stat.stanford.edu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -