📄 toon0152.m
字号:
% toon0152 -- Visualize wavelet decomposition of Doppler
%
% Every vector of n values can be represented as a sum of n
% wavelets. This type of wavelet decomposition is illustrated
% here.
%
% Doppler is a vector of n=1024 values, following a broken
% straight line. We illustrate here the function, its
% wavelet coefficients, and the different wavelet components.
%
% Notes:
% 1. There are only about 30 nonvanishing wavelet components
% for this signal, many fewer than 1024.
% 2. At each resolution level, there are only a few nonzero
% components.
%
t = (1:1024)./1024;
Doppler = MakeSignal('Doppler',1024);
wc = FWT_CDJV(Doppler,3,3);
delta = .25;
count = sum(abs(wc) > delta);
%
subplot(221); plot(t,Doppler); title('Object Doppler');
subplot(223); PlotWaveCoeff(wc,3,0.); title('WT[Doppler]');
ylabel('log(resolution)'); xlabel('position')
%
subplot(122);
LockAxes([0 1 0 count+1]);
title('Wavelet Components of Object Doppler');
%
w = zeros(size(wc));
nplot = 0;
scal = 3;
wcj = wc(1:8);
kx = find(abs(wcj) > delta);
nkx = length(kx);
for kk=1:nkx,
k = kx(kk);
w(k) = wc(k);
x = IWT_CDJV(w,3,3);
nplot = nplot+1;
plot(t,nplot + 2*x);
txt = sprintf('(%1.0f,%2.0f)',scal,k-1);
text(.87,nplot+.275,txt);
w(k)=0;
end
drawnow;
for j=3:9,
wcj = wc(dyad(j));
kx = find(abs(wcj) > delta);
nkx = length(kx);
for kk=1:nkx,
k = kx(kk);
w(dyad2ix(j,k-1)) = wcj(k);
x = IWT_CDJV(w,3,3);
nplot = nplot+1;
plot(t,nplot + x);
txt = sprintf('(%1.0f,%2.0f)',j,k-1);
text(.87,nplot+.275,txt);
w(dyad2ix(j,k-1))=0;
end
% drawnow;
end
UnlockAxes;
%% Part of Wavelab Version 850% Built Tue Jan 3 13:20:43 EST 2006% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail wavelab@stat.stanford.edu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -