⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gapopulation.h

📁 关于遗传算法代码。比较全。希望能给大家带来帮助。
💻 H
字号:
// $Header: /usr/people/mbwall/src/galib/ga/RCS/GAPopulation.h,v 1.3 1999/03/30 02:40:28 mbwall Exp $
/* ----------------------------------------------------------------------------
  population.h
  mbwall 3aug94
  Copyright (c) 1995 Massachusetts Institute of Technology
                     all rights reserved

 DESCRIPTION:
  The population holds an array of pointers to genomes.  It also keeps
track of the fitness statistics for the genomes in the population.
---------------------------------------------------------------------------- */
#ifndef _ga_population_h_
#define _ga_population_h_

#include <ga/gaconfig.h>
#include <ga/gaid.h>
#include <ga/GASelector.h>
#include <ga/GAScaling.h>
#include <ga/GAEvalData.h>
#include <ga/GAGenome.h>

#ifdef max
#undef max
#endif

#ifdef min
#undef min
#endif


/* ----------------------------------------------------------------------------
size
  Use the size member function to get and set the size of the population.  The
population allocates space for genomes in chunks, so you can vary the 
chunksize as well if you are really tight for space.  The compact member 
function will remove all extra pointers.  If you shrink the population to 0
then you cannot use the 'size' method to make the population bigger.  When
resizing to a larger size, we clone randomly individuals from the existing
population.

sort
  The sort member is defined so that it can work on a const population.  It
does not change the logical state of the population, but it does change its
physical state.  We sort from best (0th individual) to worst (n-1).  The sort
figures out whether high is best or low is best.

evaluate
  If you want to force an evaluation, pass gaTrue to the evaluate member
function.  Otherwise the population will use its internal state to determine
whether or not it needs to do the evaluation.

initialize
  This method determines how the population should be initialized.  The 
default is to call the initializer for each genome.

statistics
  Update the statistics.  We do this only on-demand so that no unneeded 
calculations take place.

diversity
  Like the statistics function, we call this one only on demand.  This member
function can be particularly expensive, especially for large populations.  So
we store the values and update them only as needed.  The population diversity
measure is the average of the individual measures (less the diagonal scores).
---------------------------------------------------------------------------- */
class GAPopulation : public GAID {
public:
  GADefineIdentity("GAPopulation", GAID::Population);

  typedef void (*Initializer)(GAPopulation &);
  typedef void (*Evaluator)(GAPopulation &);

  static void DefaultInitializer(GAPopulation &);
  static void DefaultEvaluator(GAPopulation &);

public:
  enum SortBasis { RAW, SCALED };
  enum SortOrder { LOW_IS_BEST, HIGH_IS_BEST };
  enum Replacement { BEST = -1, WORST = -2, RANDOM = -3 };

public:
  GAPopulation();
  GAPopulation(const GAGenome & c, unsigned int psize=1);
  GAPopulation(const GAPopulation & arg);
  GAPopulation & operator=(const GAPopulation & arg){copy(arg); return(*this);}
  virtual ~GAPopulation();
  virtual GAPopulation * clone() const {return new GAPopulation(*this);}
  virtual void copy(const GAPopulation & arg);

  int size() const { return n; }
  int size(unsigned int popsize);
  int chunksize() const { return csz; }
  int chunksize(unsigned int csize) { return csz=csize; }
  int compact();

  void touch() 
    { rsorted=ssorted=selectready=divved=statted=scaled=evaluated=gaFalse; }
  void statistics(GABoolean flag=gaFalse) const;
  void diversity(GABoolean flag=gaFalse) const;
  void scale(GABoolean flag=gaFalse) const;
  void prepselect(GABoolean flag=gaFalse) const;
  void sort(GABoolean flag=gaFalse, SortBasis basis=RAW) const;

  float sum() const {if(!statted) statistics(); return rawSum;}
  float ave() const {if(!statted) statistics(); return rawAve;}
  float var() const {if(!statted) statistics(); return rawVar;}
  float dev() const {if(!statted) statistics(); return rawDev;}
  float max() const {if(!statted) statistics(); return rawMax;}
  float min() const {if(!statted) statistics(); return rawMin;}
  float div() const {if(!divved)  diversity();  return popDiv;}
  float div(unsigned int i, unsigned int j) const 
    {if(!divved) diversity(); return indDiv[i*n+j];}
  float fitsum() const {if(!scaled) scale(); return fitSum;}
  float fitave() const {if(!scaled) scale(); return fitAve;}
  float fitmax() const {if(!scaled) scale(); return fitMax;}
  float fitmin() const {if(!scaled) scale(); return fitMin;}
  float fitvar() const {if(!scaled) scale(); return fitVar;}
  float fitdev() const {if(!scaled) scale(); return fitDev;}

  int nevals() const { return neval; }
  void evaluate(GABoolean flag=gaFalse) {
    if(evaluated == gaFalse || flag == gaTrue){
      (*eval)(*this); neval++;
      scaled = statted = divved = rsorted = ssorted = gaFalse;
    }
    evaluated = gaTrue;
  }
  Evaluator evaluator() const {return eval;}
  Evaluator evaluator(Evaluator e)
    { evaluated = gaFalse; return eval=e; }
  void initialize() { neval = 0; (*init)(*this); touch(); }
  Initializer initializer() const {return init;}
  Initializer initializer(Initializer i)
    { return init=i; }
  SortOrder order() const { return sortorder; }
  SortOrder order(SortOrder flag);
  GAGenome & select() { if(!selectready) prepselect(); return slct->select(); }
  GASelectionScheme & selector() const { return *slct; }
  GASelectionScheme & selector(const GASelectionScheme&);
  GAScalingScheme & scaling() const {
    GAPopulation* This = (GAPopulation*)this;
    This->scaled=gaFalse;
    return *sclscm; 
  }
  GAScalingScheme & scaling(const GAScalingScheme&);

  GAGeneticAlgorithm * geneticAlgorithm() const {return ga;}
  GAGeneticAlgorithm * geneticAlgorithm(GAGeneticAlgorithm&);
  void * userData() const {return ud;}
  void * userData(void * u){return(ud=u);}
  GAEvalData * evalData() const {return evaldata;}
  GAEvalData * evalData(const GAEvalData& o)
    {delete evaldata; evaldata = o.clone(); return evaldata;}

  GAGenome& best(unsigned int i=0, SortBasis basis=RAW) const {
    if(basis == SCALED) scale();
    sort(gaFalse, basis);
    return ((basis == RAW) ? *(rind[i]) : *(sind[i])); 
  }
  GAGenome& worst(unsigned int i=0, SortBasis basis=RAW) const {
    if(basis == SCALED) scale();
    sort(gaFalse, basis); 
    return ((basis == RAW) ? *(rind[n-1-i]) : *(sind[n-1-i]));
  }
  GAGenome& individual(unsigned int i, SortBasis basis=RAW) const 
    { return ((basis == RAW) ? *(rind[i]) : *(sind[i])); }

  GAGenome * add(GAGenome *);
  GAGenome * add(const GAGenome&);
  GAGenome * remove(int which=WORST, SortBasis basis=RAW);
  GAGenome * remove(GAGenome *);
  GAGenome * replace(GAGenome *, int which=RANDOM, SortBasis basis=RAW);
  GAGenome * replace(GAGenome * newgenome, GAGenome * oldgenome);
  void destroy(int w=WORST, SortBasis b=RAW) { delete remove(w,b); }

#ifndef NO_STREAMS
  virtual void read(istream &){}
  virtual void write (ostream & os, SortBasis basis=RAW) const;
#endif

protected:
  unsigned int neval;		// number of evals since initialization
  unsigned int csz;		// how big are chunks we allocate?
  unsigned int n, N;		// how many are in the population, allocated
  SortOrder sortorder;		// is best a high score or a low score?
  GABoolean rsorted;		// are the individuals sorted? (raw)
  GABoolean ssorted;		// are the individuals sorted? (scaled)
  GABoolean scaled;		// has the population been scaled?
  GABoolean statted;		// are the stats valid?
  GABoolean evaluated;		// has the population been evaluated?
  GABoolean divved;		// has the population diversity been measured?
  GABoolean selectready;	// has the selector been updated?
  float rawSum, rawAve;		// sum, ave of the population's objectives
  float rawMax, rawMin;		// max, min of the population's objectives
  float rawVar, rawDev;		// variance, standard deviation
  float popDiv;			// overall population diversity [0,)
  float* indDiv;		// table for genome similarities (diversity)
  GAGenome** rind;		// the individuals of the population (raw)
  GAGenome** sind;		// the individuals of the population (scaled)
  float fitSum, fitAve;		// sum, ave of the population's fitness scores
  float fitMax, fitMin;		// max, min of the population's fitness scores
  float fitVar, fitDev;		// variance, standard deviation of fitness
  GAScalingScheme* sclscm;	// scaling method
  GASelectionScheme* slct;	// selection method
  Initializer init;		// initialization method
  Evaluator eval;		// population evaluation method
  void* ud;		        // pointer to user data
  GAGeneticAlgorithm* ga;	// the ga that is using this population
  GAEvalData* evaldata;		// data for evaluator to use (optional)

  int grow(unsigned int);

  static void QuickSortAscendingRaw(GAGenome**, int, int);
  static void QuickSortDescendingRaw(GAGenome**, int, int);
  static void QuickSortAscendingScaled(GAGenome**, int, int);
  static void QuickSortDescendingScaled(GAGenome**, int, int);
};



#ifndef NO_STREAMS
inline ostream& operator<< (ostream& os, const GAPopulation & arg)
{ arg.write(os); return os; }
inline istream& operator>> (istream& is, GAPopulation & arg)
{ arg.read(is); return is; }
#endif

#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -