📄 face.nn
字号:
440 20 10 1 01 0.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.0000000.000000 1.000000 -3.2015290.5662980.0108420.769702-0.060447-0.136225-0.031189-0.1099360.692558-0.129468-0.0017230.1626280.0707420.0602800.5569580.0664710.6538640.4544710.4386350.2677500.0371370.0519070.4909740.1779610.551369-0.0109610.242223-0.650186-0.1028170.0485710.266881-0.484329-0.531610-0.3551560.767358-0.496677-0.039464-0.4014740.0434610.151748-0.3610633.1083910.421147-0.008077-0.302825-0.4847750.2592990.1559710.309707-0.554400-0.2352030.2314840.271767-0.0708620.081217-0.1917120.3302310.152212-0.0559550.527597-0.142097-0.106594-0.0008150.0104970.4955180.478767-0.145205-0.461272-0.334830-0.0317700.3800630.3618910.0216100.119066-0.4588840.095641-0.039005-0.083428-0.256288-0.036822-0.6861320.019883-1.654834-0.0457570.0788180.156426-0.297644-1.5302410.7035880.0285420.537565-0.018597-0.5254200.455293-0.119562-0.7808240.4869720.6588840.7645450.0450750.129001-0.640528-0.472110-0.221328-0.1522760.2662310.510507-0.230103-0.350198-0.144022-0.0536430.0092710.5316280.243849-0.033413-0.393975-0.3974040.3890030.546367-0.287751-0.242864-0.440698-0.5113652.0313130.097471-0.534174-0.619182-0.100663-0.4764220.036971-0.0830440.110165-0.4303970.012879-0.0787020.031942-0.1008650.062342-0.704555-0.091875-0.043771-0.306659-0.327512-0.1732620.1285470.245413-0.218657-0.620610-0.011948-0.160526-0.2075550.1762140.0785890.1630050.0418680.128532-0.303796-0.2976470.4093020.311131-0.0071920.045790-0.4281520.3099302.5997100.010480-0.113839-0.160170-0.1332270.034676-0.0134870.460164-1.106370-0.6082380.2678070.3911250.0372441.085376-0.488261-0.209330-0.003527-0.0349140.3310640.012054-0.3765600.426579-0.038390-0.2375232.3966110.608971-0.0650440.003041-0.8494730.261345-0.0834610.2089570.113283-0.3173690.012624-0.719873-0.0633430.4836850.385298-0.5039580.3496392.392106-1.0228661.031690-0.222936-0.168896-0.411384-0.103857-0.2139990.102991-0.0676790.300983-0.283849-0.469617-0.177266-0.0479430.349781-0.069352-0.469750-0.2019390.0060970.0473630.0531160.210219-0.5390540.0161320.0556590.419556-0.3476980.615738-0.2336720.100071-0.2253040.0659660.4221390.2182100.275440-0.740806-0.3173730.8178230.718825-0.498775-2.489559-0.0659000.737159-0.057719-0.093687-0.0850630.0988920.491381-0.791506-0.4722150.305742-0.063319-0.0891340.558653-0.389885-0.4140750.3289730.1844470.579512-0.114049-1.3858050.4633540.190568-0.0456240.8897390.132828-0.0037670.119727-0.4708790.186970-0.4748160.0302360.342259-0.380514-0.101155-0.7211800.213059-0.0288520.178632-0.5881790.0343460.7099750.8226710.785549-0.0671780.7309360.516539-0.130641-0.539579-0.509919-0.1951170.1578560.212915-0.3731880.0169010.062285-0.580409-0.0438160.012573-0.3660790.078361-0.243139-0.2950250.0242410.425850-0.182127-0.1670880.1890040.3328720.015789-0.3548990.362512-0.0630910.3205640.1563180.492585-0.2630310.367383-0.053034-0.092959-0.3950800.1051522.256209-0.7282100.243903-0.349106-0.1660960.063112-0.4168720.0052730.0895200.7331090.4148240.5448421.2284930.3857070.0736210.081281-0.4205860.0317200.832929-0.4322770.2591490.3199630.240715-0.155656-0.3618930.7453760.1436510.2126140.1282700.0905180.186302-0.363680-0.2471720.246831-0.3295430.107313-0.0363040.0955920.9150800.4924690.0128430.588353-0.111278-0.6512640.490239-0.139957-0.721526-0.255111-0.557479-0.309615-0.3213990.095712-0.1599810.067184-0.092800-0.184546-0.9251750.366166-0.065896-0.0257570.114380-0.289320-0.6703290.4038610.4592120.066613-0.486695-0.5050980.156005-0.1129390.296224-0.408819-0.5801390.3224830.3431180.4413130.4153990.8234690.487580-0.1075650.220022-0.368156-0.619831-0.170266-1.831597-0.8600770.3496050.333779-0.0092230.555289-0.124892-0.5816730.904484-0.0561000.027106-0.0439410.3187391.3425940.131437-0.236487-0.0622040.1893930.1450950.9482280.065380-0.1501100.749578-0.475770-0.132249-0.1830550.1167860.3341010.3206920.4424100.2056330.317292-0.141042-0.3793490.6272300.189316-0.256173-0.229249-0.3932730.6279140.009342-0.281140-0.0257860.8130980.5755730.1987510.146754-0.634690-0.4454490.009193-0.440818-0.024765-0.4933290.4879200.1257110.7361510.575862-0.130085-0.398664-0.3485230.098245-0.970909-0.810584-0.3857520.207622-0.154624-0.5229730.3949070.397418-0.0734840.205864-0.0965910.293175-0.068336-0.499100-0.622035-0.644182-0.440363-0.309354-0.396289-1.1606140.0319960.0707140.5420941.089337-0.0700150.190325-0.580113-0.789279-1.1503260.041311-0.2963090.167674-0.3553340.038819-0.6948730.7387420.6003480.162857-0.016026-0.014508-0.9291130.2681240.1345210.091152-0.511584-0.1296530.0221550.591705-0.304231-0.7863310.4115790.3159650.156331-0.079234-0.367043-0.113313-0.548306-0.7842551.2842980.036910-0.304525-0.132879-1.4517410.970397-2.4830670.493812-0.089799-0.228842-0.2419500.033003-0.4394660.2681060.216802-0.140523-0.054854-0.4549540.5430460.001154-0.058389-0.017188-0.069483-0.6816270.103510-0.461585-0.130856-0.602370-0.0318640.1976760.301716-0.505774-0.078511-0.6566960.129122-0.7261680.2114850.024348-0.2167000.053361-0.1974670.343560-0.260018-2.134216-0.334532-0.352954-0.332659-0.1097130.0202620.097346-0.340805-0.3057360.0997150.183282-0.0832271.1773050.019819-0.116002-0.2618230.0782110.1886260.739850-0.2914760.069020-0.0661150.142808-0.157168-0.060964-0.4028730.1382210.1286070.2520780.040968-0.052452-0.008345-0.474117-0.2785730.1611520.235589-0.3046380.3694130.0196380.5168910.3136511.622106-0.0244700.7714300.103239-0.0376130.644807-0.6315490.0044170.983036-0.3830940.1100480.370022-0.552856-0.188252-0.3297300.3796650.4567420.3800980.7070400.072807-0.152256-0.0067300.6747560.475319-0.2665260.5536990.3254750.325755-0.186157-0.0619060.6467010.0941870.021353-0.1859890.0458840.241627-0.0644440.0308630.395720-0.4027060.052223-2.4115520.0285850.0686470.264965-0.412550-0.314680-0.4635060.099492-0.735806-0.8828720.129840-0.035149-0.3006690.9348730.0833530.2673290.273111-0.608782-0.7548250.034933-0.9652270.447630-0.077653-0.5887131.2625830.642119-0.264808-0.194886-0.931368-0.035770-0.0081060.5478190.057925-0.339329-0.220791-0.3659310.0214310.4537790.0293850.456904-0.554863-2.277697-0.121882-0.0475070.3567280.265102-0.7711950.1051920.097456-0.149769-0.447891-0.2241700.062245-0.035404-0.5630790.0542030.2768010.757030-0.2481830.481444-0.200221-0.1309050.077823-0.2352200.7503870.1319430.0974100.0042210.432398-0.1552420.591946-0.2654920.3856900.3938130.233297-0.4336050.6473870.307575-0.325333-0.723547-0.2226320.291854-2.824000-1.087881-0.1202140.090564-0.080522-0.4034960.1025720.1336190.0541130.0312900.433416-0.3469760.491837-0.202543-0.170291-0.3432070.0105740.472348-0.187740-0.220902-0.376586-0.195978-0.134613-0.154351-0.2923940.3979450.2359080.2058240.1865350.388343-0.150848-0.148865-0.271453-0.505873-0.1056540.160151-0.1442690.2723110.033837-0.032207-0.3970774.3404380.4424380.022867-0.238247-0.3003840.008218-0.8249740.5743350.7830950.723867-0.441784-0.002015-0.824629-0.3081350.029380-0.000519-0.3457610.4224750.3548220.7849400.576768-0.048015-0.241246-0.217823-0.140626-0.239627-0.465737-0.0085360.4283850.343559-0.114154-0.0953710.3695150.596012-0.3806470.194635-0.031337-0.177595-0.897676-0.146922-0.214093 4.298476-1.4792211.1629072.499703-0.393245-1.976578-0.9908011.094934-1.5295532.0503621.2996421.087654-1.213780-1.5464700.794672-0.9684981.076682-0.894281-1.879640-1.9383880.3248665.102507-1.4063331.6845841.2551770.8685181.616740-0.457266-0.769087-0.189010-2.062146-1.236179-1.796135-0.365736-0.955805-1.5555431.6588960.6634902.214863-2.2254220.3160810.841150-5.3426910.3986370.9037011.8080731.0058752.8070460.786772-2.4824421.302477-0.0220010.590301-0.144868-1.523541-0.4455540.113238-0.7071152.505973-0.905885-1.2158872.1274481.804092-2.0333272.3326100.4916540.143468-1.5471631.0932931.558517-0.0458520.507461-2.3899890.6028951.141405-1.926462-0.698574-0.5468070.508566-1.2150531.150206-2.3179532.214832-1.3888101.179943-1.941180-2.171837-1.9063052.086641-3.655383-3.6068952.183963-0.950499-2.7907732.411105-2.9524692.2971602.913506-3.4387301.6109142.8174442.461226-1.7273612.234011-3.0978912.7223760.7874762.000575-1.395128-2.363367-2.7413640.7330191.296907-1.602894-0.218469-1.782314-0.236442-0.5724781.496612-1.7720922.128423-1.997853-0.036887-0.3119140.066356-3.014950-2.0301220.607435-0.8532270.9754422.5210532.2890010.226408-0.4588612.7556422.645674-1.4533391.623902-0.927742-0.4447282.1152111.9066350.231104-1.5466661.2825321.988792-0.5533400.5741541.5135180.6544160.1651282.265884-1.3588340.2366891.9062681.208848-0.825925-1.415908-2.0927290.5093630.435434-1.6067501.715644-0.0497681.2545230.039204-2.475021-1.897044-1.8268640.501868-1.9305702.1111820.358071-1.6701820.1957572.050760-1.625879-0.730458-0.389156-1.7104711.1288490.0612591.3858302.0162751.9037370.9927290.6383551.9255041.3043003.6918131.369152-1.1427372.1170530.848752-1.2783472.373512-2.247748-1.8783122.0109530.3172790.371711-0.5621890.298557-0.6164421.4690070.933072-1.283899-1.8906550.0739941.738251 -0.3049422.967176-1.3026890.1862730.6331916.5467892.883735-2.471193-0.057237-0.122077-1.254956 net = train2(net,{face;nface},1000,'traingdx');TRAINGDX-calcgrad, Epoch 0/1000, MSE 0.0380841/0, Gradient 0.0161943/1e-006TRAINGDX-calcgrad, Epoch 25/1000, MSE 0.0379897/0, Gradient 0.0160989/1e-006TRAINGDX-calcgrad, Epoch 50/1000, MSE 0.0377002/0, Gradient 0.0157962/1e-006TRAINGDX-calcgrad, Epoch 75/1000, MSE 0.0367918/0, Gradient 0.0148357/1e-006TRAINGDX-calcgrad, Epoch 100/1000, MSE 0.0342653/0, Gradient 0.0131359/1e-006TRAINGDX-calcgrad, Epoch 125/1000, MSE 0.0288224/0, Gradient 0.00899192/1e-006TRAINGDX-calcgrad, Epoch 150/1000, MSE 0.0195839/0, Gradient 0.00661213/1e-006TRAINGDX-calcgrad, Epoch 175/1000, MSE 0.0114634/0, Gradient 0.00248487/1e-006TRAINGDX-calcgrad, Epoch 200/1000, MSE 0.00730671/0, Gradient 0.00141872/1e-006TRAINGDX-calcgrad, Epoch 225/1000, MSE 0.00619382/0, Gradient 0.0139478/1e-006TRAINGDX-calcgrad, Epoch 250/1000, MSE 0.00552043/0, Gradient 0.00225788/1e-006TRAINGDX-calcgrad, Epoch 275/1000, MSE 0.00506328/0, Gradient 0.00117316/1e-006TRAINGDX-calcgrad, Epoch 300/1000, MSE 0.00394131/0, Gradient 0.000806827/1e-006TRAINGDX-calcgrad, Epoch 325/1000, MSE 0.00304252/0, Gradient 0.00243748/1e-006TRAINGDX-calcgrad, Epoch 350/1000, MSE 0.00297078/0, Gradient 0.00102562/1e-006TRAINGDX-calcgrad, Epoch 375/1000, MSE 0.0028294/0, Gradient 0.00061697/1e-006TRAINGDX-calcgrad, Epoch 400/1000, MSE 0.00243267/0, Gradient 0.000526016/1e-006TRAINGDX-calcgrad, Epoch 425/1000, MSE 0.00187066/0, Gradient 0.00242446/1e-006TRAINGDX-calcgrad, Epoch 450/1000, MSE 0.00183145/0, Gradient 0.000864909/1e-006TRAINGDX-calcgrad, Epoch 475/1000, MSE 0.0017861/0, Gradient 0.000520862/1e-006TRAINGDX-calcgrad, Epoch 500/1000, MSE 0.00167154/0, Gradient 0.000361654/1e-006TRAINGDX-calcgrad, Epoch 525/1000, MSE 0.00136531/0, Gradient 0.000335621/1e-006TRAINGDX-calcgrad, Epoch 550/1000, MSE 0.00132639/0, Gradient 0.00278421/1e-006TRAINGDX-calcgrad, Epoch 575/1000, MSE 0.00128443/0, Gradient 0.000823477/1e-006TRAINGDX-calcgrad, Epoch 600/1000, MSE 0.00123788/0, Gradient 0.000294566/1e-006TRAINGDX-calcgrad, Epoch 625/1000, MSE 0.00110702/0, Gradient 0.000240032/1e-006TRAINGDX-calcgrad, Epoch 650/1000, MSE 0.000992816/0, Gradient 0.00162968/1e-006TRAINGDX-calcgrad, Epoch 675/1000, MSE 0.000973248/0, Gradient 0.000397771/1e-006TRAINGDX-calcgrad, Epoch 700/1000, MSE 0.000951908/0, Gradient 0.000277682/1e-006TRAINGDX-calcgrad, Epoch 725/1000, MSE 0.000891638/0, Gradient 0.000194585/1e-006TRAINGDX-calcgrad, Epoch 750/1000, MSE 0.000745773/0, Gradient 0.000971981/1e-006TRAINGDX-calcgrad, Epoch 775/1000, MSE 0.000738705/0, Gradient 0.000281221/1e-006TRAINGDX-calcgrad, Epoch 800/1000, MSE 0.000731111/0, Gradient 0.000223325/1e-006TRAINGDX-calcgrad, Epoch 825/1000, MSE 0.000708551/0, Gradient 0.0001534/1e-006TRAINGDX-calcgrad, Epoch 850/1000, MSE 0.000642279/0, Gradient 0.000133356/1e-006TRAINGDX-calcgrad, Epoch 875/1000, MSE 0.000624203/0, Gradient 0.00193949/1e-006TRAINGDX-calcgrad, Epoch 900/1000, MSE 0.000604328/0, Gradient 0.000337345/1e-006TRAINGDX-calcgrad, Epoch 925/1000, MSE 0.000593177/0, Gradient 0.000146603/1e-006TRAINGDX-calcgrad, Epoch 950/1000, MSE 0.000560221/0, Gradient 0.000115208/1e-006TRAINGDX-calcgrad, Epoch 975/1000, MSE 0.000535758/0, Gradient 0.00183329/1e-006TRAINGDX-calcgrad, Epoch 1000/1000, MSE 0.000518507/0, Gradient 0.000550508/1e-006TRAINGDX, Maximum epoch reached, performance goal was not met. train set: 893 17154 se: 99.55 sp: 100.00 pp: 100.00 np: 99.98 ac: 99.98 er: 0.000519 validation set: 447 8578 se: 96.42 sp: 99.90 pp: 97.95 np: 99.81 ac: 99.72 er: 0.001824 test set: 447 8578 se: 97.32 sp: 99.90 pp: 97.97 np: 99.86 ac: 99.77 er: 0.001746
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -