⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svm-train.c

📁 vc 2005下的libsvm2.8.4
💻 C
字号:
#include <stdio.h>#include <stdlib.h>#include <string.h>#include <ctype.h>#include "svm.h"#define Malloc(type,n) (type *)malloc((n)*sizeof(type))void exit_with_help(){	printf(		"Usage: svm-train [options] training_set_file [model_file]\n"		"options:\n"		"-s svm_type : set type of SVM (default 0)\n"		"	0 -- C-SVC\n"		"	1 -- nu-SVC\n"		"	2 -- one-class SVM\n"		"	3 -- epsilon-SVR\n"		"	4 -- nu-SVR\n"		"-t kernel_type : set type of kernel function (default 2)\n"		"	0 -- linear: u'*v\n"		"	1 -- polynomial: (gamma*u'*v + coef0)^degree\n"		"	2 -- radial basis function: exp(-gamma*|u-v|^2)\n"		"	3 -- sigmoid: tanh(gamma*u'*v + coef0)\n"		"	4 -- precomputed kernel (kernel values in training_set_file)\n"		"-d degree : set degree in kernel function (default 3)\n"		"-g gamma : set gamma in kernel function (default 1/k)\n"		"-r coef0 : set coef0 in kernel function (default 0)\n"		"-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n"		"-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n"		"-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n"		"-m cachesize : set cache memory size in MB (default 100)\n"		"-e epsilon : set tolerance of termination criterion (default 0.001)\n"		"-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)\n"		"-b probability_estimates: whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n"		"-wi weight: set the parameter C of class i to weight*C, for C-SVC (default 1)\n"		"-v n: n-fold cross validation mode\n"		);	exit(1);}void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name);void read_problem(const char *filename);void do_cross_validation();struct svm_parameter param;		// set by parse_command_linestruct svm_problem prob;		// set by read_problemstruct svm_model *model;struct svm_node *x_space;int cross_validation;int nr_fold;int main(int argc, char **argv){	char input_file_name[1024];	char model_file_name[1024];	const char *error_msg;	parse_command_line(argc, argv, input_file_name, model_file_name);	read_problem(input_file_name);	error_msg = svm_check_parameter(&prob,&param);	if(error_msg)	{		fprintf(stderr,"Error: %s\n",error_msg);		exit(1);	}	if(cross_validation)	{		do_cross_validation();	}	else	{		model = svm_train(&prob,&param);		svm_save_model(model_file_name,model);		svm_destroy_model(model);	}	svm_destroy_param(&param);	free(prob.y);	free(prob.x);	free(x_space);	return 0;}void do_cross_validation(){	int i;	int total_correct = 0;	double total_error = 0;	double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;	double *target = Malloc(double,prob.l);	svm_cross_validation(&prob,&param,nr_fold,target);	if(param.svm_type == EPSILON_SVR ||		param.svm_type == NU_SVR)	{		for(i=0;i<prob.l;i++)		{			double y = prob.y[i];			double v = target[i];			total_error += (v-y)*(v-y);			sumv += v;			sumy += y;			sumvv += v*v;			sumyy += y*y;			sumvy += v*y;		}		printf("Cross Validation Mean squared error = %g\n",total_error/prob.l);		printf("Cross Validation Squared correlation coefficient = %g\n",			((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/			((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))			);	}	else	{		for(i=0;i<prob.l;i++)			if(target[i] == prob.y[i])				++total_correct;		printf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l);	}	free(target);}void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name){	int i;	// default values	param.svm_type = C_SVC;	param.kernel_type = RBF;	param.degree = 3;	param.gamma = 0;	// 1/k	param.coef0 = 0;	param.nu = 0.5;	param.cache_size = 100;	param.C = 1;	param.eps = 1e-3;	param.p = 0.1;	param.shrinking = 1;	param.probability = 0;	param.nr_weight = 0;	param.weight_label = NULL;	param.weight = NULL;	cross_validation = 0;	// parse options	for(i=1;i<argc;i++)	{		if(argv[i][0] != '-') break;		if(++i>=argc)			exit_with_help();		switch(argv[i-1][1])		{		case 's':			param.svm_type = atoi(argv[i]);			break;		case 't':			param.kernel_type = atoi(argv[i]);			break;		case 'd':			param.degree = atoi(argv[i]);			break;		case 'g':			param.gamma = atof(argv[i]);			break;		case 'r':			param.coef0 = atof(argv[i]);			break;		case 'n':			param.nu = atof(argv[i]);			break;		case 'm':			param.cache_size = atof(argv[i]);			break;		case 'c':			param.C = atof(argv[i]);			break;		case 'e':			param.eps = atof(argv[i]);			break;		case 'p':			param.p = atof(argv[i]);			break;		case 'h':			param.shrinking = atoi(argv[i]);			break;		case 'b':			param.probability = atoi(argv[i]);			break;		case 'v':			cross_validation = 1;			nr_fold = atoi(argv[i]);			if(nr_fold < 2)			{				fprintf(stderr,"n-fold cross validation: n must >= 2\n");				exit_with_help();			}			break;		case 'w':			++param.nr_weight;			param.weight_label = (int *)realloc(param.weight_label,sizeof(int)*param.nr_weight);			param.weight = (double *)realloc(param.weight,sizeof(double)*param.nr_weight);			param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]);			param.weight[param.nr_weight-1] = atof(argv[i]);			break;		default:			fprintf(stderr,"unknown option\n");			exit_with_help();		}	}	// determine filenames	if(i>=argc)		exit_with_help();	strcpy(input_file_name, argv[i]);	if(i<argc-1)		strcpy(model_file_name,argv[i+1]);	else	{		char *p = strrchr(argv[i],'/');		if(p==NULL)			p = argv[i];		else			++p;		sprintf(model_file_name,"%s.model",p);	}}// read in a problem (in svmlight format)void read_problem(const char *filename){	int elements, max_index, i, j;	FILE *fp = fopen(filename,"r");	if(fp == NULL)	{		fprintf(stderr,"can't open input file %s\n",filename);		exit(1);	}	prob.l = 0;	elements = 0;	while(1)	{		int c = fgetc(fp);		switch(c)		{		case '\n':			++prob.l;			// fall through,			// count the '-1' element		case ':':			++elements;			break;		case EOF:			goto out;		default:			;		}	}out:	rewind(fp);	prob.y = Malloc(double,prob.l);	prob.x = Malloc(struct svm_node *,prob.l);	x_space = Malloc(struct svm_node,elements);	max_index = 0;	j=0;	for(i=0;i<prob.l;i++)	{		double label;		prob.x[i] = &x_space[j];		fscanf(fp,"%lf",&label);		prob.y[i] = label;		while(1)		{			int c;			do {				c = getc(fp);				if(c=='\n') goto out2;			} while(isspace(c));			ungetc(c,fp);			if (fscanf(fp,"%d:%lf",&(x_space[j].index),&(x_space[j].value)) < 2)			{				fprintf(stderr,"Wrong input format at line %d\n", i+1);				exit(1);			}			++j;		}	out2:		if(j>=1 && x_space[j-1].index > max_index)			max_index = x_space[j-1].index;		x_space[j++].index = -1;	}	if(param.gamma == 0)		param.gamma = 1.0/max_index;	if(param.kernel_type == PRECOMPUTED)		for(i=0;i<prob.l;i++)		{			if (prob.x[i][0].index != 0)			{				fprintf(stderr,"Wrong input format: first column must be 0:sample_serial_number\n");				exit(1);			}			if ((int)prob.x[i][0].value <= 0 || (int)prob.x[i][0].value > max_index)			{				fprintf(stderr,"Wrong input format: sample_serial_number out of range\n");				exit(1);			}		}		fclose(fp);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -