📄 zherk.f
字号:
SUBROUTINE ZHERK( UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, $ C, LDC )** -- Automatically Tuned Linear Algebra Software (ATLAS)* (C) Copyright 2000 All Rights Reserved** -- ATLAS routine -- F77 Interface -- Version 3.2 -- December 25, 2000** Author : Antoine P. Petitet* Originally developed at the University of Tennessee,* Innovative Computing Laboratory, Knoxville TN, 37996-1301, USA.** ---------------------------------------------------------------------** -- Copyright notice and Licensing terms:** Redistribution and use in source and binary forms, with or without* modification, are permitted provided that the following conditions* are met:** 1. Redistributions of source code must retain the above copyright* notice, this list of conditions and the following disclaimer.* 2. Redistributions in binary form must reproduce the above copyright* notice, this list of conditions, and the following disclaimer in* the documentation and/or other materials provided with the distri-* bution.* 3. The name of the University, the ATLAS group, or the names of its* contributors may not be used to endorse or promote products deri-* ved from this software without specific written permission.** -- Disclaimer:** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-* CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEO-* RY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-* CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.** ---------------------------------------------------------------------** .. Scalar Arguments .. CHARACTER*1 UPLO, TRANS INTEGER N, K, LDA, LDC DOUBLE PRECISION ALPHA, BETA* ..* .. Array Arguments .. COMPLEX*16 A( LDA, * ), C( LDC, * )* ..** Purpose* =======** ZHERK performs one of the Hermitian rank k operations** C := alpha * A * conjg( A' ) + beta * C,** or** C := alpha * conjg( A' ) * A + beta * C,** where alpha and beta are real scalars, C is an n by n Hermitian ma-* trix and A is an n by k matrix in the first case and a k by n matrix* in the second case.** Arguments* =========** UPLO (input) CHARACTER*1* On entry, UPLO specifies whether the upper or lower triangu-* lar part of the array C is to be referenced as follows:** UPLO = 'U' or 'u' Only the upper triangular part of C* is to be referenced.** UPLO = 'L' or 'l' Only the lower triangular part of C* is to be referenced.** Unchanged on exit.** TRANS (input) CHARACTER*1* On entry, TRANS specifies the operation to be performed as* follows:** TRANS = 'N' or 'n' C := alpha * A*conjg( A )' + beta * C,** TRANS = 'C' or 'c' C := alpha * conjg( A )'*A + beta * C.** Unchanged on exit.** N (input) INTEGER* On entry, N specifies the order of the matrix C. N must be at* least zero. Unchanged on exit.** K (input) INTEGER* On entry, with TRANS = 'N' or 'n', K specifies the number of* columns of the matrix A, and with TRANS = 'C' or 'c', K spe-* cifies the number of rows of the matrix A. K must be at* least zero. Unchanged on exit.** ALPHA (input) DOUBLE PRECISION* On entry, ALPHA specifies the scalar alpha. When ALPHA is* supplied as zero then the entries of the matrix A need not* be set on input. Unchanged on exit.** A (input) COMPLEX*16 array* On entry, A is an array of DIMENSION ( LDA, ka ), where ka is* k when TRANS = 'N' or 'n', and is n otherwise. Before entry* with TRANS = 'N' or 'n', the leading n by k part of the array* A must contain the matrix A, otherwise the leading k by n* part of the array A must contain the matrix A. Unchanged on* exit.** LDA (input) INTEGER* On entry, LDA specifies the first dimension of A as declared* in the calling (sub) program. When TRANS = 'N' or 'n'* then LDA must be at least max( 1, n ), otherwise LDA must* be at least max( 1, k ). Unchanged on exit.** BETA (input) DOUBLE PRECISION* On entry, BETA specifies the scalar beta. When BETA is* supplied as zero then the entries of the matrix C need not* be set on input. Unchanged on exit.** C (input/output) COMPLEX*16 array* On entry, C is an array of DIMENSION ( LDC, n ). Before entry* with UPLO = 'U' or 'u', the leading n by n upper triangular* part of the array C must contain the upper triangular part of* the Hermitian matrix and the strictly lower triangular part* of C is not referenced. On exit, the upper triangular part of* the array C is overwritten by the upper triangular part of* the updated matrix. Before entry with UPLO = 'L' or 'l', the* leading n by n lower triangular part of the array C must con-* tain the lower triangular part of the Hermitian matrix and* the strictly upper triangular part of C is not referenced. On* exit, the lower triangular part of the array C is overwritten* by the lower triangular part of the updated matrix.* Note that the imaginary parts of the diagonal elements of C* need not be set, they are assumed to be zero, and on exit* they are set to zero.** LDC (input) INTEGER* On entry, LDC specifies the first dimension of C as declared* in the calling (sub) program. LDC must be at least* max( 1, n ). Unchanged on exit.** Further Details* ===============** For further information on the Level 1 BLAS specification, see:** ``A Proposal for Standard Linear Algebra Subprograms'' by R. Hanson,* F. Krogh and C. Lawson, ACM SIGNUM Newsl., 8(16), 1973,** ``Basic Linear Algebra Subprograms for Fortran Usage'' by C. Lawson,* R. Hanson, D. Kincaid and F. Krogh, ACM Transactions on Mathematical* Software, 5(3) pp 308-323, 1979.** For further information on the Level 2 BLAS specification, see:** ``An Extended Set of FORTRAN Basic Linear Algebra Subprograms'' by* J. Dongarra, J. Du Croz, S. Hammarling and R. Hanson, ACM Transac-* tions on Mathematical Software, 14(1) pp 1-17, 1988.** ``Algorithm 656: An extended Set of Basic Linear Algebra Subprograms:* Model Implementation and Test Programs'' by J. Dongarra, J. Du Croz,* S. Hammarling and R. Hanson, ACM Transactions on Mathematical Soft-* ware, 14(1) pp 18-32, 1988.** For further information on the Level 3 BLAS specification, see:** ``A Set of Level 3 Basic Linear Algebra Subprograms'' by J. Dongarra,* J. Du Croz, I. Duff and S. Hammarling, ACM Transactions on Mathemati-* cal Software, 16(1), pp 1-17, 1990.** =====================================================================** .. Parameters .. INTEGER ILOWER, IUPPER PARAMETER ( IUPPER = 121, ILOWER = 122 ) INTEGER ICOTRAN, INOTRAN, ITRAN PARAMETER ( INOTRAN = 111, ITRAN = 112, ICOTRAN = 113 )* ..* .. Local Scalars .. INTEGER INFO, ITRANS, IUPLO, NROWA* ..* .. External Subroutines .. EXTERNAL ATL_F77WRAP_ZHERK, XERBLA* ..* .. External Functions .. EXTERNAL LSAME LOGICAL LSAME* ..* .. Intrinsic Functions .. INTRINSIC MAX* ..* .. Executable Statements ..* INFO = 0* IF( LSAME( UPLO , 'L' ) ) THEN IUPLO = ILOWER ELSE IF( LSAME( UPLO , 'U' ) ) THEN IUPLO = IUPPER ELSE IUPLO = ILOWER INFO = 1 END IF* IF( LSAME( TRANS, 'N' ) ) THEN ITRANS = INOTRAN NROWA = N ELSE IF( LSAME( TRANS, 'C' ) ) THEN ITRANS = ICOTRAN NROWA = K ELSE IF( INFO.EQ.0 ) THEN ITRANS = INOTRAN NROWA = 0 INFO = 2 END IF* IF( INFO.EQ.0 ) THEN IF( N .LT.0 ) THEN INFO = 3 ELSE IF( K .LT.0 ) THEN INFO = 4 ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN INFO = 7 ELSE IF( LDC.LT.MAX( 1, N ) ) THEN INFO = 10 END IF END IF* IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZHERK ', INFO ) RETURN END IF* CALL ATL_F77WRAP_ZHERK( IUPLO, ITRANS, N, K, ALPHA, A, LDA, $ BETA, C, LDC )* RETURN** End of ZHERK* END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -