📄 ac3dec.c
字号:
/* block switch flags */ for (ch = 1; ch <= nfchans; ch++) ctx->blksw[ch] = get_bits1(gb); /* dithering flags */ ctx->dither_all = 1; for (ch = 1; ch <= nfchans; ch++) { ctx->dithflag[ch] = get_bits1(gb); if(!ctx->dithflag[ch]) ctx->dither_all = 0; } /* dynamic range */ i = !(ctx->acmod); do { if(get_bits1(gb)) { ctx->dynrng[i] = dynrng_tab[get_bits(gb, 8)]; } else if(blk == 0) { ctx->dynrng[i] = 1.0f; } } while(i--); /* coupling strategy */ if (get_bits1(gb)) { memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); ctx->cplinu = get_bits1(gb); if (ctx->cplinu) { /* coupling in use */ int cplbegf, cplendf; /* determine which channels are coupled */ for (ch = 1; ch <= nfchans; ch++) ctx->chincpl[ch] = get_bits1(gb); /* phase flags in use */ if (acmod == AC3_ACMOD_STEREO) ctx->phsflginu = get_bits1(gb); /* coupling frequency range and band structure */ cplbegf = get_bits(gb, 4); cplendf = get_bits(gb, 4); if (3 + cplendf - cplbegf < 0) { av_log(ctx->avctx, AV_LOG_ERROR, "cplendf = %d < cplbegf = %d\n", cplendf, cplbegf); return -1; } ctx->ncplbnd = ctx->ncplsubnd = 3 + cplendf - cplbegf; ctx->startmant[CPL_CH] = cplbegf * 12 + 37; ctx->endmant[CPL_CH] = cplendf * 12 + 73; for (bnd = 0; bnd < ctx->ncplsubnd - 1; bnd++) { if (get_bits1(gb)) { ctx->cplbndstrc[bnd] = 1; ctx->ncplbnd--; } } } else { /* coupling not in use */ for (ch = 1; ch <= nfchans; ch++) ctx->chincpl[ch] = 0; } } /* coupling coordinates */ if (ctx->cplinu) { int cplcoe = 0; for (ch = 1; ch <= nfchans; ch++) { if (ctx->chincpl[ch]) { if (get_bits1(gb)) { int mstrcplco, cplcoexp, cplcomant; cplcoe = 1; mstrcplco = 3 * get_bits(gb, 2); for (bnd = 0; bnd < ctx->ncplbnd; bnd++) { cplcoexp = get_bits(gb, 4); cplcomant = get_bits(gb, 4); if (cplcoexp == 15) ctx->cplco[ch][bnd] = cplcomant / 16.0f; else ctx->cplco[ch][bnd] = (cplcomant + 16.0f) / 32.0f; ctx->cplco[ch][bnd] *= scale_factors[cplcoexp + mstrcplco]; } } } } /* phase flags */ if (acmod == AC3_ACMOD_STEREO && ctx->phsflginu && cplcoe) { for (bnd = 0; bnd < ctx->ncplbnd; bnd++) { if (get_bits1(gb)) ctx->cplco[2][bnd] = -ctx->cplco[2][bnd]; } } } /* stereo rematrixing strategy and band structure */ if (acmod == AC3_ACMOD_STEREO) { ctx->rematstr = get_bits1(gb); if (ctx->rematstr) { ctx->nrematbnd = 4; if(ctx->cplinu && ctx->startmant[CPL_CH] <= 61) ctx->nrematbnd -= 1 + (ctx->startmant[CPL_CH] == 37); for(bnd=0; bnd<ctx->nrematbnd; bnd++) ctx->rematflg[bnd] = get_bits1(gb); } } /* exponent strategies for each channel */ ctx->expstr[CPL_CH] = EXP_REUSE; ctx->expstr[ctx->lfe_ch] = EXP_REUSE; for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) { if(ch == ctx->lfe_ch) ctx->expstr[ch] = get_bits(gb, 1); else ctx->expstr[ch] = get_bits(gb, 2); if(ctx->expstr[ch] != EXP_REUSE) bit_alloc_stages[ch] = 3; } /* channel bandwidth */ for (ch = 1; ch <= nfchans; ch++) { ctx->startmant[ch] = 0; if (ctx->expstr[ch] != EXP_REUSE) { int prev = ctx->endmant[ch]; if (ctx->chincpl[ch]) ctx->endmant[ch] = ctx->startmant[CPL_CH]; else { int chbwcod = get_bits(gb, 6); if (chbwcod > 60) { av_log(ctx->avctx, AV_LOG_ERROR, "chbwcod = %d > 60", chbwcod); return -1; } ctx->endmant[ch] = chbwcod * 3 + 73; } if(blk > 0 && ctx->endmant[ch] != prev) memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); } } ctx->startmant[ctx->lfe_ch] = 0; ctx->endmant[ctx->lfe_ch] = 7; /* decode exponents for each channel */ for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) { if (ctx->expstr[ch] != EXP_REUSE) { int grpsize, ngrps; grpsize = 3 << (ctx->expstr[ch] - 1); if(ch == CPL_CH) ngrps = (ctx->endmant[ch] - ctx->startmant[ch]) / grpsize; else if(ch == ctx->lfe_ch) ngrps = 2; else ngrps = (ctx->endmant[ch] + grpsize - 4) / grpsize; ctx->dexps[ch][0] = get_bits(gb, 4) << !ch; decode_exponents(gb, ctx->expstr[ch], ngrps, ctx->dexps[ch][0], &ctx->dexps[ch][ctx->startmant[ch]+!!ch]); if(ch != CPL_CH && ch != ctx->lfe_ch) skip_bits(gb, 2); /* skip gainrng */ } } /* bit allocation information */ if (get_bits1(gb)) { ctx->bit_alloc_params.sdecay = ff_sdecaytab[get_bits(gb, 2)] >> ctx->bit_alloc_params.halfratecod; ctx->bit_alloc_params.fdecay = ff_fdecaytab[get_bits(gb, 2)] >> ctx->bit_alloc_params.halfratecod; ctx->bit_alloc_params.sgain = ff_sgaintab[get_bits(gb, 2)]; ctx->bit_alloc_params.dbknee = ff_dbkneetab[get_bits(gb, 2)]; ctx->bit_alloc_params.floor = ff_floortab[get_bits(gb, 3)]; for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) { bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2); } } /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */ if (get_bits1(gb)) { int csnr; csnr = (get_bits(gb, 6) - 15) << 4; for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) { /* snr offset and fast gain */ ctx->snroffst[ch] = (csnr + get_bits(gb, 4)) << 2; ctx->fgain[ch] = ff_fgaintab[get_bits(gb, 3)]; } memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); } /* coupling leak information */ if (ctx->cplinu && get_bits1(gb)) { ctx->bit_alloc_params.cplfleak = get_bits(gb, 3); ctx->bit_alloc_params.cplsleak = get_bits(gb, 3); bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2); } /* delta bit allocation information */ if (get_bits1(gb)) { /* delta bit allocation exists (strategy) */ for (ch = !ctx->cplinu; ch <= nfchans; ch++) { ctx->deltbae[ch] = get_bits(gb, 2); if (ctx->deltbae[ch] == DBA_RESERVED) { av_log(ctx->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n"); return -1; } bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2); } /* channel delta offset, len and bit allocation */ for (ch = !ctx->cplinu; ch <= nfchans; ch++) { if (ctx->deltbae[ch] == DBA_NEW) { ctx->deltnseg[ch] = get_bits(gb, 3); for (seg = 0; seg <= ctx->deltnseg[ch]; seg++) { ctx->deltoffst[ch][seg] = get_bits(gb, 5); ctx->deltlen[ch][seg] = get_bits(gb, 4); ctx->deltba[ch][seg] = get_bits(gb, 3); } } } } else if(blk == 0) { for(ch=0; ch<=ctx->nchans; ch++) { ctx->deltbae[ch] = DBA_NONE; } } /* Bit allocation */ for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) { if(bit_alloc_stages[ch] > 2) { /* Exponent mapping into PSD and PSD integration */ ff_ac3_bit_alloc_calc_psd(ctx->dexps[ch], ctx->startmant[ch], ctx->endmant[ch], ctx->psd[ch], ctx->bndpsd[ch]); } if(bit_alloc_stages[ch] > 1) { /* Compute excitation function, Compute masking curve, and Apply delta bit allocation */ ff_ac3_bit_alloc_calc_mask(&ctx->bit_alloc_params, ctx->bndpsd[ch], ctx->startmant[ch], ctx->endmant[ch], ctx->fgain[ch], (ch == ctx->lfe_ch), ctx->deltbae[ch], ctx->deltnseg[ch], ctx->deltoffst[ch], ctx->deltlen[ch], ctx->deltba[ch], ctx->mask[ch]); } if(bit_alloc_stages[ch] > 0) { /* Compute bit allocation */ ff_ac3_bit_alloc_calc_bap(ctx->mask[ch], ctx->psd[ch], ctx->startmant[ch], ctx->endmant[ch], ctx->snroffst[ch], ctx->bit_alloc_params.floor, ctx->bap[ch]); } } /* unused dummy data */ if (get_bits1(gb)) { int skipl = get_bits(gb, 9); while(skipl--) skip_bits(gb, 8); } /* unpack the transform coefficients this also uncouples channels if coupling is in use. */ if (get_transform_coeffs(ctx)) { av_log(ctx->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n"); return -1; } /* recover coefficients if rematrixing is in use */ if(ctx->acmod == AC3_ACMOD_STEREO) do_rematrixing(ctx); /* apply scaling to coefficients (headroom, dialnorm, dynrng) */ for(ch=1; ch<=ctx->nchans; ch++) { float gain = 2.0f * ctx->mul_bias; if(ctx->acmod == AC3_ACMOD_DUALMONO) { gain *= ctx->dialnorm[ch-1] * ctx->dynrng[ch-1]; } else { gain *= ctx->dialnorm[0] * ctx->dynrng[0]; } for(i=0; i<ctx->endmant[ch]; i++) { ctx->transform_coeffs[ch][i] *= gain; } } do_imdct(ctx); /* downmix output if needed */ if(ctx->nchans != ctx->out_channels && !((ctx->output_mode & AC3_OUTPUT_LFEON) && ctx->nfchans == ctx->out_channels)) { ac3_downmix(ctx->output, ctx->nfchans, ctx->output_mode, ctx->downmix_coeffs); } /* convert float to 16-bit integer */ for(ch=0; ch<ctx->out_channels; ch++) { for(i=0; i<256; i++) { ctx->output[ch][i] += ctx->add_bias; } ctx->dsp.float_to_int16(ctx->int_output[ch], ctx->output[ch], 256); } return 0;}/** * Decode a single AC-3 frame. */static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size){ AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data; int16_t *out_samples = (int16_t *)data; int i, blk, ch, err; /* initialize the GetBitContext with the start of valid AC-3 Frame */ init_get_bits(&ctx->gb, buf, buf_size * 8); /* parse the syncinfo */ err = ac3_parse_header(ctx); if(err) { switch(err) { case AC3_PARSE_ERROR_SYNC: av_log(avctx, AV_LOG_ERROR, "frame sync error\n"); break; case AC3_PARSE_ERROR_BSID: av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n"); break; case AC3_PARSE_ERROR_SAMPLE_RATE: av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n"); break; case AC3_PARSE_ERROR_FRAME_SIZE: av_log(avctx, AV_LOG_ERROR, "invalid frame size\n"); break; default: av_log(avctx, AV_LOG_ERROR, "invalid header\n"); break; } return -1; } avctx->sample_rate = ctx->sampling_rate; avctx->bit_rate = ctx->bit_rate; /* check that reported frame size fits in input buffer */ if(ctx->frame_size > buf_size) { av_log(avctx, AV_LOG_ERROR, "incomplete frame\n"); return -1; } /* channel config */ ctx->out_channels = ctx->nchans; if (avctx->channels == 0) { avctx->channels = ctx->out_channels; } else if(ctx->out_channels < avctx->channels) { av_log(avctx, AV_LOG_ERROR, "Cannot upmix AC3 from %d to %d channels.\n", ctx->out_channels, avctx->channels); return -1; } if(avctx->channels == 2) { ctx->output_mode = AC3_ACMOD_STEREO; } else if(avctx->channels == 1) { ctx->output_mode = AC3_ACMOD_MONO; } else if(avctx->channels != ctx->out_channels) { av_log(avctx, AV_LOG_ERROR, "Cannot downmix AC3 from %d to %d channels.\n", ctx->out_channels, avctx->channels); return -1; } ctx->out_channels = avctx->channels; /* parse the audio blocks */ for (blk = 0; blk < NB_BLOCKS; blk++) { if (ac3_parse_audio_block(ctx, blk)) { av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n"); *data_size = 0; return ctx->frame_size; } for (i = 0; i < 256; i++) for (ch = 0; ch < ctx->out_channels; ch++) *(out_samples++) = ctx->int_output[ch][i]; } *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t); return ctx->frame_size;}/** * Uninitialize the AC-3 decoder. */static int ac3_decode_end(AVCodecContext *avctx){ AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data; ff_mdct_end(&ctx->imdct_512); ff_mdct_end(&ctx->imdct_256); return 0;}AVCodec ac3_decoder = { .name = "ac3", .type = CODEC_TYPE_AUDIO, .id = CODEC_ID_AC3, .priv_data_size = sizeof (AC3DecodeContext), .init = ac3_decode_init, .close = ac3_decode_end, .decode = ac3_decode_frame,};
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -