⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ac3dec.c

📁 ffmpeg的完整源代码和作者自己写的文档。不但有在Linux的工程哦
💻 C
📖 第 1 页 / 共 3 页
字号:
/* * AC-3 Audio Decoder * This code is developed as part of Google Summer of Code 2006 Program. * * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com). * Copyright (c) 2007 Justin Ruggles * * Portions of this code are derived from liba52 * http://liba52.sourceforge.net * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org> * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */#include <stdio.h>#include <stddef.h>#include <math.h>#include <string.h>#include "avcodec.h"#include "ac3_parser.h"#include "bitstream.h"#include "dsputil.h"#include "random.h"/** * Table of bin locations for rematrixing bands * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions */static const uint8_t rematrix_band_tab[5] = { 13, 25, 37, 61, 253 };/** * table for exponent to scale_factor mapping * scale_factors[i] = 2 ^ -i */static float scale_factors[25];/** table for grouping exponents */static uint8_t exp_ungroup_tab[128][3];/** tables for ungrouping mantissas */static float b1_mantissas[32][3];static float b2_mantissas[128][3];static float b3_mantissas[8];static float b4_mantissas[128][2];static float b5_mantissas[16];/** * Quantization table: levels for symmetric. bits for asymmetric. * reference: Table 7.18 Mapping of bap to Quantizer */static const uint8_t qntztab[16] = {    0, 3, 5, 7, 11, 15,    5, 6, 7, 8, 9, 10, 11, 12, 14, 16};/** dynamic range table. converts codes to scale factors. */static float dynrng_tab[256];/** dialogue normalization table */static float dialnorm_tab[32];/** Adjustments in dB gain */#define LEVEL_MINUS_3DB         0.7071067811865476#define LEVEL_MINUS_4POINT5DB   0.5946035575013605#define LEVEL_MINUS_6DB         0.5000000000000000#define LEVEL_MINUS_9DB         0.3535533905932738#define LEVEL_ZERO              0.0000000000000000#define LEVEL_ONE               1.0000000000000000static const float gain_levels[6] = {    LEVEL_ZERO,    LEVEL_ONE,    LEVEL_MINUS_3DB,    LEVEL_MINUS_4POINT5DB,    LEVEL_MINUS_6DB,    LEVEL_MINUS_9DB};/** * Table for center mix levels * reference: Section 5.4.2.4 cmixlev */static const uint8_t clevs[4] = { 2, 3, 4, 3 };/** * Table for surround mix levels * reference: Section 5.4.2.5 surmixlev */static const uint8_t slevs[4] = { 2, 4, 0, 4 };/** * Table for default stereo downmixing coefficients * reference: Section 7.8.2 Downmixing Into Two Channels */static const uint8_t ac3_default_coeffs[8][5][2] = {    { { 1, 0 }, { 0, 1 },                               },    { { 2, 2 },                                         },    { { 1, 0 }, { 0, 1 },                               },    { { 1, 0 }, { 3, 3 }, { 0, 1 },                     },    { { 1, 0 }, { 0, 1 }, { 4, 4 },                     },    { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 },           },    { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 },           },    { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },};/* override ac3.h to include coupling channel */#undef AC3_MAX_CHANNELS#define AC3_MAX_CHANNELS 7#define CPL_CH 0#define AC3_OUTPUT_LFEON  8typedef struct {    int acmod;                              ///< audio coding mode    int dsurmod;                            ///< dolby surround mode    int blksw[AC3_MAX_CHANNELS];            ///< block switch flags    int dithflag[AC3_MAX_CHANNELS];         ///< dither flags    int dither_all;                         ///< true if all channels are dithered    int cplinu;                             ///< coupling in use    int chincpl[AC3_MAX_CHANNELS];          ///< channel in coupling    int phsflginu;                          ///< phase flags in use    int cplbndstrc[18];                     ///< coupling band structure    int rematstr;                           ///< rematrixing strategy    int nrematbnd;                          ///< number of rematrixing bands    int rematflg[4];                        ///< rematrixing flags    int expstr[AC3_MAX_CHANNELS];           ///< exponent strategies    int snroffst[AC3_MAX_CHANNELS];         ///< signal-to-noise ratio offsets    int fgain[AC3_MAX_CHANNELS];            ///< fast gain values (signal-to-mask ratio)    int deltbae[AC3_MAX_CHANNELS];          ///< delta bit allocation exists    int deltnseg[AC3_MAX_CHANNELS];         ///< number of delta segments    uint8_t deltoffst[AC3_MAX_CHANNELS][8]; ///< delta segment offsets    uint8_t deltlen[AC3_MAX_CHANNELS][8];   ///< delta segment lengths    uint8_t deltba[AC3_MAX_CHANNELS][8];    ///< delta values for each segment    int sampling_rate;                      ///< sample frequency, in Hz    int bit_rate;                           ///< stream bit rate, in bits-per-second    int frame_size;                         ///< current frame size, in bytes    int nchans;                             ///< number of total channels    int nfchans;                            ///< number of full-bandwidth channels    int lfeon;                              ///< lfe channel in use    int lfe_ch;                             ///< index of LFE channel    int output_mode;                        ///< output channel configuration    int out_channels;                       ///< number of output channels    float downmix_coeffs[AC3_MAX_CHANNELS][2];  ///< stereo downmix coefficients    float dialnorm[2];                      ///< dialogue normalization    float dynrng[2];                        ///< dynamic range    float cplco[AC3_MAX_CHANNELS][18];      ///< coupling coordinates    int   ncplbnd;                          ///< number of coupling bands    int   ncplsubnd;                        ///< number of coupling sub bands    int   startmant[AC3_MAX_CHANNELS];      ///< start frequency bin    int   endmant[AC3_MAX_CHANNELS];        ///< end frequency bin    AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters    int8_t  dexps[AC3_MAX_CHANNELS][256];   ///< decoded exponents    uint8_t bap[AC3_MAX_CHANNELS][256];     ///< bit allocation pointers    int16_t psd[AC3_MAX_CHANNELS][256];     ///< scaled exponents    int16_t bndpsd[AC3_MAX_CHANNELS][50];   ///< interpolated exponents    int16_t mask[AC3_MAX_CHANNELS][50];     ///< masking curve values    DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]);  ///< transform coefficients    /* For IMDCT. */    MDCTContext imdct_512;                  ///< for 512 sample IMDCT    MDCTContext imdct_256;                  ///< for 256 sample IMDCT    DSPContext  dsp;                        ///< for optimization    float       add_bias;                   ///< offset for float_to_int16 conversion    float       mul_bias;                   ///< scaling for float_to_int16 conversion    DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]);     ///< output after imdct transform and windowing    DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output    DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]);      ///< delay - added to the next block    DECLARE_ALIGNED_16(float, tmp_imdct[256]);                      ///< temporary storage for imdct transform    DECLARE_ALIGNED_16(float, tmp_output[512]);                     ///< temporary storage for output before windowing    DECLARE_ALIGNED_16(float, window[256]);                         ///< window coefficients    /* Miscellaneous. */    GetBitContext gb;                       ///< bitstream reader    AVRandomState dith_state;               ///< for dither generation    AVCodecContext *avctx;                  ///< parent context} AC3DecodeContext;/** * Generate a Kaiser-Bessel Derived Window. */static void ac3_window_init(float *window){   int i, j;   double sum = 0.0, bessel, tmp;   double local_window[256];   double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);   for (i = 0; i < 256; i++) {       tmp = i * (256 - i) * alpha2;       bessel = 1.0;       for (j = 100; j > 0; j--) /* default to 100 iterations */           bessel = bessel * tmp / (j * j) + 1;       sum += bessel;       local_window[i] = sum;   }   sum++;   for (i = 0; i < 256; i++)       window[i] = sqrt(local_window[i] / sum);}/** * Symmetrical Dequantization * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization *            Tables 7.19 to 7.23 */static inline floatsymmetric_dequant(int code, int levels){    return (code - (levels >> 1)) * (2.0f / levels);}/* * Initialize tables at runtime. */static void ac3_tables_init(void){    int i;    /* generate grouped mantissa tables       reference: Section 7.3.5 Ungrouping of Mantissas */    for(i=0; i<32; i++) {        /* bap=1 mantissas */        b1_mantissas[i][0] = symmetric_dequant( i / 9     , 3);        b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);        b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);    }    for(i=0; i<128; i++) {        /* bap=2 mantissas */        b2_mantissas[i][0] = symmetric_dequant( i / 25     , 5);        b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);        b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);        /* bap=4 mantissas */        b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);        b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);    }    /* generate ungrouped mantissa tables       reference: Tables 7.21 and 7.23 */    for(i=0; i<7; i++) {        /* bap=3 mantissas */        b3_mantissas[i] = symmetric_dequant(i, 7);    }    for(i=0; i<15; i++) {        /* bap=5 mantissas */        b5_mantissas[i] = symmetric_dequant(i, 15);    }    /* generate dynamic range table       reference: Section 7.7.1 Dynamic Range Control */    for(i=0; i<256; i++) {        int v = (i >> 5) - ((i >> 7) << 3) - 5;        dynrng_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);    }    /* generate dialogue normalization table       references: Section 5.4.2.8 dialnorm                   Section 7.6 Dialogue Normalization */    for(i=1; i<32; i++) {        dialnorm_tab[i] = expf((i-31) * M_LN10 / 20.0f);    }    dialnorm_tab[0] = dialnorm_tab[31];    /* generate scale factors for exponents and asymmetrical dequantization       reference: Section 7.3.2 Expansion of Mantissas for Asymmetric Quantization */    for (i = 0; i < 25; i++)        scale_factors[i] = pow(2.0, -i);    /* generate exponent tables       reference: Section 7.1.3 Exponent Decoding */    for(i=0; i<128; i++) {        exp_ungroup_tab[i][0] =  i / 25;        exp_ungroup_tab[i][1] = (i % 25) / 5;        exp_ungroup_tab[i][2] = (i % 25) % 5;    }}/** * AVCodec initialization */static int ac3_decode_init(AVCodecContext *avctx){    AC3DecodeContext *ctx = avctx->priv_data;    ctx->avctx = avctx;    ac3_common_init();    ac3_tables_init();    ff_mdct_init(&ctx->imdct_256, 8, 1);    ff_mdct_init(&ctx->imdct_512, 9, 1);    ac3_window_init(ctx->window);    dsputil_init(&ctx->dsp, avctx);    av_init_random(0, &ctx->dith_state);    /* set bias values for float to int16 conversion */    if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) {        ctx->add_bias = 385.0f;        ctx->mul_bias = 1.0f;    } else {        ctx->add_bias = 0.0f;        ctx->mul_bias = 32767.0f;    }    return 0;}/** * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream. * GetBitContext within AC3DecodeContext must point to * start of the synchronized ac3 bitstream. */static int ac3_parse_header(AC3DecodeContext *ctx){    AC3HeaderInfo hdr;    GetBitContext *gb = &ctx->gb;    float cmixlev, surmixlev;    int err, i;    err = ff_ac3_parse_header(gb->buffer, &hdr);    if(err)        return err;    /* get decoding parameters from header info */    ctx->bit_alloc_params.fscod       = hdr.fscod;    ctx->acmod                        = hdr.acmod;    cmixlev                           = gain_levels[clevs[hdr.cmixlev]];    surmixlev                         = gain_levels[slevs[hdr.surmixlev]];    ctx->dsurmod                      = hdr.dsurmod;    ctx->lfeon                        = hdr.lfeon;    ctx->bit_alloc_params.halfratecod = hdr.halfratecod;    ctx->sampling_rate                = hdr.sample_rate;    ctx->bit_rate                     = hdr.bit_rate;    ctx->nchans                       = hdr.channels;    ctx->nfchans                      = ctx->nchans - ctx->lfeon;    ctx->lfe_ch                       = ctx->nfchans + 1;    ctx->frame_size                   = hdr.frame_size;    /* set default output to all source channels */    ctx->out_channels = ctx->nchans;    ctx->output_mode = ctx->acmod;    if(ctx->lfeon)        ctx->output_mode |= AC3_OUTPUT_LFEON;    /* skip over portion of header which has already been read */    skip_bits(gb, 16); // skip the sync_word    skip_bits(gb, 16); // skip crc1    skip_bits(gb, 8);  // skip fscod and frmsizecod    skip_bits(gb, 11); // skip bsid, bsmod, and acmod    if(ctx->acmod == AC3_ACMOD_STEREO) {        skip_bits(gb, 2); // skip dsurmod    } else {        if((ctx->acmod & 1) && ctx->acmod != AC3_ACMOD_MONO)            skip_bits(gb, 2); // skip cmixlev        if(ctx->acmod & 4)            skip_bits(gb, 2); // skip surmixlev    }    skip_bits1(gb); // skip lfeon    /* read the rest of the bsi. read twice for dual mono mode. */    i = !(ctx->acmod);    do {        ctx->dialnorm[i] = dialnorm_tab[get_bits(gb, 5)]; // dialogue normalization        if (get_bits1(gb))            skip_bits(gb, 8); //skip compression        if (get_bits1(gb))            skip_bits(gb, 8); //skip language code        if (get_bits1(gb))            skip_bits(gb, 7); //skip audio production information    } while (i--);    skip_bits(gb, 2); //skip copyright bit and original bitstream bit

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -