📄 ac3dec.c
字号:
/* * AC-3 Audio Decoder * This code is developed as part of Google Summer of Code 2006 Program. * * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com). * Copyright (c) 2007 Justin Ruggles * * Portions of this code are derived from liba52 * http://liba52.sourceforge.net * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org> * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */#include <stdio.h>#include <stddef.h>#include <math.h>#include <string.h>#include "avcodec.h"#include "ac3_parser.h"#include "bitstream.h"#include "dsputil.h"#include "random.h"/** * Table of bin locations for rematrixing bands * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions */static const uint8_t rematrix_band_tab[5] = { 13, 25, 37, 61, 253 };/** * table for exponent to scale_factor mapping * scale_factors[i] = 2 ^ -i */static float scale_factors[25];/** table for grouping exponents */static uint8_t exp_ungroup_tab[128][3];/** tables for ungrouping mantissas */static float b1_mantissas[32][3];static float b2_mantissas[128][3];static float b3_mantissas[8];static float b4_mantissas[128][2];static float b5_mantissas[16];/** * Quantization table: levels for symmetric. bits for asymmetric. * reference: Table 7.18 Mapping of bap to Quantizer */static const uint8_t qntztab[16] = { 0, 3, 5, 7, 11, 15, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16};/** dynamic range table. converts codes to scale factors. */static float dynrng_tab[256];/** dialogue normalization table */static float dialnorm_tab[32];/** Adjustments in dB gain */#define LEVEL_MINUS_3DB 0.7071067811865476#define LEVEL_MINUS_4POINT5DB 0.5946035575013605#define LEVEL_MINUS_6DB 0.5000000000000000#define LEVEL_MINUS_9DB 0.3535533905932738#define LEVEL_ZERO 0.0000000000000000#define LEVEL_ONE 1.0000000000000000static const float gain_levels[6] = { LEVEL_ZERO, LEVEL_ONE, LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB, LEVEL_MINUS_9DB};/** * Table for center mix levels * reference: Section 5.4.2.4 cmixlev */static const uint8_t clevs[4] = { 2, 3, 4, 3 };/** * Table for surround mix levels * reference: Section 5.4.2.5 surmixlev */static const uint8_t slevs[4] = { 2, 4, 0, 4 };/** * Table for default stereo downmixing coefficients * reference: Section 7.8.2 Downmixing Into Two Channels */static const uint8_t ac3_default_coeffs[8][5][2] = { { { 1, 0 }, { 0, 1 }, }, { { 2, 2 }, }, { { 1, 0 }, { 0, 1 }, }, { { 1, 0 }, { 3, 3 }, { 0, 1 }, }, { { 1, 0 }, { 0, 1 }, { 4, 4 }, }, { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 }, }, { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, }, { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },};/* override ac3.h to include coupling channel */#undef AC3_MAX_CHANNELS#define AC3_MAX_CHANNELS 7#define CPL_CH 0#define AC3_OUTPUT_LFEON 8typedef struct { int acmod; ///< audio coding mode int dsurmod; ///< dolby surround mode int blksw[AC3_MAX_CHANNELS]; ///< block switch flags int dithflag[AC3_MAX_CHANNELS]; ///< dither flags int dither_all; ///< true if all channels are dithered int cplinu; ///< coupling in use int chincpl[AC3_MAX_CHANNELS]; ///< channel in coupling int phsflginu; ///< phase flags in use int cplbndstrc[18]; ///< coupling band structure int rematstr; ///< rematrixing strategy int nrematbnd; ///< number of rematrixing bands int rematflg[4]; ///< rematrixing flags int expstr[AC3_MAX_CHANNELS]; ///< exponent strategies int snroffst[AC3_MAX_CHANNELS]; ///< signal-to-noise ratio offsets int fgain[AC3_MAX_CHANNELS]; ///< fast gain values (signal-to-mask ratio) int deltbae[AC3_MAX_CHANNELS]; ///< delta bit allocation exists int deltnseg[AC3_MAX_CHANNELS]; ///< number of delta segments uint8_t deltoffst[AC3_MAX_CHANNELS][8]; ///< delta segment offsets uint8_t deltlen[AC3_MAX_CHANNELS][8]; ///< delta segment lengths uint8_t deltba[AC3_MAX_CHANNELS][8]; ///< delta values for each segment int sampling_rate; ///< sample frequency, in Hz int bit_rate; ///< stream bit rate, in bits-per-second int frame_size; ///< current frame size, in bytes int nchans; ///< number of total channels int nfchans; ///< number of full-bandwidth channels int lfeon; ///< lfe channel in use int lfe_ch; ///< index of LFE channel int output_mode; ///< output channel configuration int out_channels; ///< number of output channels float downmix_coeffs[AC3_MAX_CHANNELS][2]; ///< stereo downmix coefficients float dialnorm[2]; ///< dialogue normalization float dynrng[2]; ///< dynamic range float cplco[AC3_MAX_CHANNELS][18]; ///< coupling coordinates int ncplbnd; ///< number of coupling bands int ncplsubnd; ///< number of coupling sub bands int startmant[AC3_MAX_CHANNELS]; ///< start frequency bin int endmant[AC3_MAX_CHANNELS]; ///< end frequency bin AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters int8_t dexps[AC3_MAX_CHANNELS][256]; ///< decoded exponents uint8_t bap[AC3_MAX_CHANNELS][256]; ///< bit allocation pointers int16_t psd[AC3_MAX_CHANNELS][256]; ///< scaled exponents int16_t bndpsd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents int16_t mask[AC3_MAX_CHANNELS][50]; ///< masking curve values DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]); ///< transform coefficients /* For IMDCT. */ MDCTContext imdct_512; ///< for 512 sample IMDCT MDCTContext imdct_256; ///< for 256 sample IMDCT DSPContext dsp; ///< for optimization float add_bias; ///< offset for float_to_int16 conversion float mul_bias; ///< scaling for float_to_int16 conversion DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]); ///< output after imdct transform and windowing DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]); ///< delay - added to the next block DECLARE_ALIGNED_16(float, tmp_imdct[256]); ///< temporary storage for imdct transform DECLARE_ALIGNED_16(float, tmp_output[512]); ///< temporary storage for output before windowing DECLARE_ALIGNED_16(float, window[256]); ///< window coefficients /* Miscellaneous. */ GetBitContext gb; ///< bitstream reader AVRandomState dith_state; ///< for dither generation AVCodecContext *avctx; ///< parent context} AC3DecodeContext;/** * Generate a Kaiser-Bessel Derived Window. */static void ac3_window_init(float *window){ int i, j; double sum = 0.0, bessel, tmp; double local_window[256]; double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0); for (i = 0; i < 256; i++) { tmp = i * (256 - i) * alpha2; bessel = 1.0; for (j = 100; j > 0; j--) /* default to 100 iterations */ bessel = bessel * tmp / (j * j) + 1; sum += bessel; local_window[i] = sum; } sum++; for (i = 0; i < 256; i++) window[i] = sqrt(local_window[i] / sum);}/** * Symmetrical Dequantization * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization * Tables 7.19 to 7.23 */static inline floatsymmetric_dequant(int code, int levels){ return (code - (levels >> 1)) * (2.0f / levels);}/* * Initialize tables at runtime. */static void ac3_tables_init(void){ int i; /* generate grouped mantissa tables reference: Section 7.3.5 Ungrouping of Mantissas */ for(i=0; i<32; i++) { /* bap=1 mantissas */ b1_mantissas[i][0] = symmetric_dequant( i / 9 , 3); b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3); b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3); } for(i=0; i<128; i++) { /* bap=2 mantissas */ b2_mantissas[i][0] = symmetric_dequant( i / 25 , 5); b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5); b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5); /* bap=4 mantissas */ b4_mantissas[i][0] = symmetric_dequant(i / 11, 11); b4_mantissas[i][1] = symmetric_dequant(i % 11, 11); } /* generate ungrouped mantissa tables reference: Tables 7.21 and 7.23 */ for(i=0; i<7; i++) { /* bap=3 mantissas */ b3_mantissas[i] = symmetric_dequant(i, 7); } for(i=0; i<15; i++) { /* bap=5 mantissas */ b5_mantissas[i] = symmetric_dequant(i, 15); } /* generate dynamic range table reference: Section 7.7.1 Dynamic Range Control */ for(i=0; i<256; i++) { int v = (i >> 5) - ((i >> 7) << 3) - 5; dynrng_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20); } /* generate dialogue normalization table references: Section 5.4.2.8 dialnorm Section 7.6 Dialogue Normalization */ for(i=1; i<32; i++) { dialnorm_tab[i] = expf((i-31) * M_LN10 / 20.0f); } dialnorm_tab[0] = dialnorm_tab[31]; /* generate scale factors for exponents and asymmetrical dequantization reference: Section 7.3.2 Expansion of Mantissas for Asymmetric Quantization */ for (i = 0; i < 25; i++) scale_factors[i] = pow(2.0, -i); /* generate exponent tables reference: Section 7.1.3 Exponent Decoding */ for(i=0; i<128; i++) { exp_ungroup_tab[i][0] = i / 25; exp_ungroup_tab[i][1] = (i % 25) / 5; exp_ungroup_tab[i][2] = (i % 25) % 5; }}/** * AVCodec initialization */static int ac3_decode_init(AVCodecContext *avctx){ AC3DecodeContext *ctx = avctx->priv_data; ctx->avctx = avctx; ac3_common_init(); ac3_tables_init(); ff_mdct_init(&ctx->imdct_256, 8, 1); ff_mdct_init(&ctx->imdct_512, 9, 1); ac3_window_init(ctx->window); dsputil_init(&ctx->dsp, avctx); av_init_random(0, &ctx->dith_state); /* set bias values for float to int16 conversion */ if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) { ctx->add_bias = 385.0f; ctx->mul_bias = 1.0f; } else { ctx->add_bias = 0.0f; ctx->mul_bias = 32767.0f; } return 0;}/** * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream. * GetBitContext within AC3DecodeContext must point to * start of the synchronized ac3 bitstream. */static int ac3_parse_header(AC3DecodeContext *ctx){ AC3HeaderInfo hdr; GetBitContext *gb = &ctx->gb; float cmixlev, surmixlev; int err, i; err = ff_ac3_parse_header(gb->buffer, &hdr); if(err) return err; /* get decoding parameters from header info */ ctx->bit_alloc_params.fscod = hdr.fscod; ctx->acmod = hdr.acmod; cmixlev = gain_levels[clevs[hdr.cmixlev]]; surmixlev = gain_levels[slevs[hdr.surmixlev]]; ctx->dsurmod = hdr.dsurmod; ctx->lfeon = hdr.lfeon; ctx->bit_alloc_params.halfratecod = hdr.halfratecod; ctx->sampling_rate = hdr.sample_rate; ctx->bit_rate = hdr.bit_rate; ctx->nchans = hdr.channels; ctx->nfchans = ctx->nchans - ctx->lfeon; ctx->lfe_ch = ctx->nfchans + 1; ctx->frame_size = hdr.frame_size; /* set default output to all source channels */ ctx->out_channels = ctx->nchans; ctx->output_mode = ctx->acmod; if(ctx->lfeon) ctx->output_mode |= AC3_OUTPUT_LFEON; /* skip over portion of header which has already been read */ skip_bits(gb, 16); // skip the sync_word skip_bits(gb, 16); // skip crc1 skip_bits(gb, 8); // skip fscod and frmsizecod skip_bits(gb, 11); // skip bsid, bsmod, and acmod if(ctx->acmod == AC3_ACMOD_STEREO) { skip_bits(gb, 2); // skip dsurmod } else { if((ctx->acmod & 1) && ctx->acmod != AC3_ACMOD_MONO) skip_bits(gb, 2); // skip cmixlev if(ctx->acmod & 4) skip_bits(gb, 2); // skip surmixlev } skip_bits1(gb); // skip lfeon /* read the rest of the bsi. read twice for dual mono mode. */ i = !(ctx->acmod); do { ctx->dialnorm[i] = dialnorm_tab[get_bits(gb, 5)]; // dialogue normalization if (get_bits1(gb)) skip_bits(gb, 8); //skip compression if (get_bits1(gb)) skip_bits(gb, 8); //skip language code if (get_bits1(gb)) skip_bits(gb, 7); //skip audio production information } while (i--); skip_bits(gb, 2); //skip copyright bit and original bitstream bit
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -