📄 svd.cpp
字号:
/*! * \file * \brief Implementation of Singular Value Decompositions * \author Tony Ottosson, Simon Wood and Adam Piatyszek * * ------------------------------------------------------------------------- * * IT++ - C++ library of mathematical, signal processing, speech processing, * and communications classes and functions * * Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * ------------------------------------------------------------------------- */#ifndef _MSC_VER# include <itpp/config.h>#else# include <itpp/config_msvc.h>#endif#if defined(HAVE_LAPACK)# include <itpp/base/algebra/lapack.h>#endif#include <itpp/base/algebra/svd.h>namespace itpp {#if defined(HAVE_LAPACK) bool svd(const mat &A, vec &S) { char jobu='N', jobvt='N'; int m, n, lda, ldu, ldvt, lwork, info; m = lda = ldu = A.rows(); n = ldvt = A.cols(); lwork = std::max(3*std::min(m,n)+std::max(m,n), 5*std::min(m,n)); mat U, V; S.set_size(std::min(m,n), false); vec work(lwork); mat B(A); // The theoretical calculation of lwork above results in the minimum size // needed for dgesvd_ to run to completion without having memory errors. // For speed improvement it is best to set lwork=-1 and have dgesvd_ // calculate the best workspace requirement. int lwork_tmp = -1; dgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu, V._data(), &ldvt, work._data(), &lwork_tmp, &info); if (info == 0) { lwork = static_cast<int>(work(0)); work.set_size(lwork, false); } dgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu, V._data(), &ldvt, work._data(), &lwork, &info); return (info==0); } bool svd(const cmat &A, vec &S) { char jobu='N', jobvt='N'; int m, n, lda, ldu, ldvt, lwork, info; m = lda = ldu = A.rows(); n = ldvt = A.cols(); lwork = 2*std::min(m,n)+std::max(m,n); cvec U, V; S.set_size(std::min(m,n), false); cvec work(lwork); vec rwork(5*std::min(m, n)); cmat B(A); // The theoretical calculation of lwork above results in the minimum size // needed for zgesvd_ to run to completion without having memory errors. // For speed improvement it is best to set lwork=-1 and have zgesvd_ // calculate the best workspace requirement. int lwork_tmp = -1; zgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu, V._data(), &ldvt, work._data(), &lwork_tmp, rwork._data(), &info); if (info == 0) { lwork = static_cast<int>(real(work(0))); work.set_size(lwork, false); } zgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu, V._data(), &ldvt, work._data(), &lwork, rwork._data(), &info); return (info==0); } bool svd(const mat &A, mat &U, vec &S, mat &V) { char jobu='A', jobvt='A'; int m, n, lda, ldu, ldvt, lwork, info; m = lda = ldu = A.rows(); n = ldvt = A.cols(); lwork = std::max(3*std::min(m,n)+std::max(m,n), 5*std::min(m,n)); U.set_size(m,m, false); V.set_size(n,n, false); S.set_size(std::min(m,n), false); vec work(lwork); mat B(A); // The theoretical calculation of lwork above results in the minimum size // needed for dgesvd_ to run to completion without having memory errors. // For speed improvement it is best to set lwork=-1 and have dgesvd_ // calculate the best workspace requirement. int lwork_tmp = -1; dgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu, V._data(), &ldvt, work._data(), &lwork_tmp, &info); if (info == 0) { lwork = static_cast<int>(work(0)); work.set_size(lwork, false); } dgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu, V._data(), &ldvt, work._data(), &lwork, &info); V = V.T(); // This is probably slow!!! return (info==0); } bool svd(const cmat &A, cmat &U, vec &S, cmat &V) { char jobu='A', jobvt='A'; int m, n, lda, ldu, ldvt, lwork, info; m = lda = ldu = A.rows(); n = ldvt = A.cols(); lwork = 2*std::min(m,n)+std::max(m,n); U.set_size(m,m, false); V.set_size(n,n, false); S.set_size(std::min(m,n), false); cvec work(lwork); vec rwork(5 * std::min(m, n)); cmat B(A); // The theoretical calculation of lwork above results in the minimum size // needed for zgesvd_ to run to completion without having memory errors. // For speed improvement it is best to set lwork=-1 and have zgesvd_ // calculate the best workspace requirement. int lwork_tmp = -1; zgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu, V._data(), &ldvt, work._data(), &lwork_tmp, rwork._data(), &info); if (info == 0) { lwork = static_cast<int>(real(work(0))); work.set_size(lwork, false); } zgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu, V._data(), &ldvt, work._data(), &lwork, rwork._data(), &info); V = V.H(); // This is slow!!! return (info==0); }#else bool svd(const mat &A, vec &S) { it_error("LAPACK library is needed to use svd() function"); return false; } bool svd(const cmat &A, vec &S) { it_error("LAPACK library is needed to use svd() function"); return false; } bool svd(const mat &A, mat &U, vec &S, mat &V) { it_error("LAPACK library is needed to use svd() function"); return false; } bool svd(const cmat &A, cmat &U, vec &S, cmat &V) { it_error("LAPACK library is needed to use svd() function"); return false; }#endif // HAVE_LAPACK vec svd(const mat &A) { vec S; svd(A, S); return S; } vec svd(const cmat &A) { vec S; svd(A, S); return S; }} //namespace itpp
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -