⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svd.cpp

📁 强大的C++库
💻 CPP
字号:
/*! * \file * \brief Implementation of Singular Value Decompositions * \author Tony Ottosson, Simon Wood and Adam Piatyszek * * ------------------------------------------------------------------------- * * IT++ - C++ library of mathematical, signal processing, speech processing, *        and communications classes and functions * * Copyright (C) 1995-2008  (see AUTHORS file for a list of contributors) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * ------------------------------------------------------------------------- */#ifndef _MSC_VER#  include <itpp/config.h>#else#  include <itpp/config_msvc.h>#endif#if defined(HAVE_LAPACK)#  include <itpp/base/algebra/lapack.h>#endif#include <itpp/base/algebra/svd.h>namespace itpp {#if defined(HAVE_LAPACK)  bool svd(const mat &A, vec &S)  {    char jobu='N', jobvt='N';    int m, n, lda, ldu, ldvt, lwork, info;    m = lda = ldu = A.rows();    n = ldvt = A.cols();    lwork = std::max(3*std::min(m,n)+std::max(m,n), 5*std::min(m,n));    mat U, V;    S.set_size(std::min(m,n), false);    vec work(lwork);    mat B(A);    // The theoretical calculation of lwork above results in the minimum size    // needed for dgesvd_ to run to completion without having memory errors.    // For speed improvement it is best to set lwork=-1 and have dgesvd_    // calculate the best workspace requirement.    int lwork_tmp = -1;    dgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu,            V._data(), &ldvt, work._data(), &lwork_tmp, &info);    if (info == 0) {      lwork = static_cast<int>(work(0));      work.set_size(lwork, false);    }    dgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu,            V._data(), &ldvt, work._data(), &lwork, &info);    return (info==0);  }  bool svd(const cmat &A, vec &S)  {    char jobu='N', jobvt='N';    int m, n, lda, ldu, ldvt, lwork, info;    m = lda = ldu = A.rows();    n = ldvt = A.cols();    lwork = 2*std::min(m,n)+std::max(m,n);    cvec U, V;    S.set_size(std::min(m,n), false);    cvec work(lwork);    vec rwork(5*std::min(m, n));    cmat B(A);    // The theoretical calculation of lwork above results in the minimum size    // needed for zgesvd_ to run to completion without having memory errors.    // For speed improvement it is best to set lwork=-1 and have zgesvd_    // calculate the best workspace requirement.    int lwork_tmp = -1;    zgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu,            V._data(), &ldvt, work._data(), &lwork_tmp, rwork._data(), &info);    if (info == 0) {      lwork = static_cast<int>(real(work(0)));      work.set_size(lwork, false);    }    zgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu,            V._data(), &ldvt, work._data(), &lwork, rwork._data(), &info);    return (info==0);  }  bool svd(const mat &A, mat &U, vec &S, mat &V)  {    char jobu='A', jobvt='A';    int m, n, lda, ldu, ldvt, lwork, info;    m = lda = ldu = A.rows();    n = ldvt = A.cols();    lwork = std::max(3*std::min(m,n)+std::max(m,n), 5*std::min(m,n));    U.set_size(m,m, false);    V.set_size(n,n, false);    S.set_size(std::min(m,n), false);    vec work(lwork);    mat B(A);    // The theoretical calculation of lwork above results in the minimum size    // needed for dgesvd_ to run to completion without having memory errors.    // For speed improvement it is best to set lwork=-1 and have dgesvd_    // calculate the best workspace requirement.    int lwork_tmp = -1;    dgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu,            V._data(), &ldvt, work._data(), &lwork_tmp, &info);    if (info == 0) {      lwork = static_cast<int>(work(0));      work.set_size(lwork, false);    }    dgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu,            V._data(), &ldvt, work._data(), &lwork, &info);    V = V.T(); // This is probably slow!!!    return (info==0);  }  bool svd(const cmat &A, cmat &U, vec &S, cmat &V)  {    char jobu='A', jobvt='A';    int m, n, lda, ldu, ldvt, lwork, info;    m = lda = ldu = A.rows();    n = ldvt = A.cols();    lwork = 2*std::min(m,n)+std::max(m,n);    U.set_size(m,m, false);    V.set_size(n,n, false);    S.set_size(std::min(m,n), false);    cvec work(lwork);    vec rwork(5 * std::min(m, n));    cmat B(A);    // The theoretical calculation of lwork above results in the minimum size    // needed for zgesvd_ to run to completion without having memory errors.    // For speed improvement it is best to set lwork=-1 and have zgesvd_    // calculate the best workspace requirement.    int lwork_tmp = -1;    zgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu,            V._data(), &ldvt, work._data(), &lwork_tmp, rwork._data(), &info);    if (info == 0) {      lwork = static_cast<int>(real(work(0)));      work.set_size(lwork, false);    }    zgesvd_(&jobu, &jobvt, &m, &n, B._data(), &lda, S._data(), U._data(), &ldu,            V._data(), &ldvt, work._data(), &lwork, rwork._data(), &info);    V = V.H(); // This is slow!!!    return (info==0);  }#else  bool svd(const mat &A, vec &S)  {    it_error("LAPACK library is needed to use svd() function");    return false;  }  bool svd(const cmat &A, vec &S)  {    it_error("LAPACK library is needed to use svd() function");    return false;  }  bool svd(const mat &A, mat &U, vec &S, mat &V)  {    it_error("LAPACK library is needed to use svd() function");    return false;  }  bool svd(const cmat &A, cmat &U, vec &S, cmat &V)  {    it_error("LAPACK library is needed to use svd() function");    return false;  }#endif // HAVE_LAPACK  vec svd(const mat &A)  {    vec S;    svd(A, S);    return S;  }  vec svd(const cmat &A)  {    vec S;    svd(A, S);    return S;  }} //namespace itpp

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -