⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 det.cpp

📁 强大的C++库
💻 CPP
字号:
/*! * \file * \brief Implementation of determinant calculations * \author Tony Ottosson * * ------------------------------------------------------------------------- * * IT++ - C++ library of mathematical, signal processing, speech processing, *        and communications classes and functions * * Copyright (C) 1995-2008  (see AUTHORS file for a list of contributors) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * ------------------------------------------------------------------------- */#include <itpp/base/algebra/det.h>#include <itpp/base/algebra/lu.h>namespace itpp {  /* Determinant of square matrix.     Calculate determinant of inmatrix (Uses LU-factorisation)     (See Theorem 3.2.1 p. 97 in Golub & van Loan, "Matrix Computations").     det(X) = det(P')*det(L)*det(U) = det(P')*1*prod(diag(U))  */  double det(const mat &X)  {    it_assert_debug(X.rows()==X.cols(),"det : Only square matrices");    mat L, U;    ivec p;    double s=1.0;    int i;    lu(X,L,U,p); // calculate LU-factorisation    double temp=U(0,0);    for (i=1;i<X.rows();i++) {      temp*=U(i,i);    }    // Calculate det(P'). Equal to (-1)^(no row changes)    for (i=0; i<p.size(); i++)      if (i != p(i))	s *=-1.0;    return temp*s;  }  /* Determinant of complex square matrix.     Calculate determinant of inmatrix (Uses LU-factorisation)     (See Theorem 3.2.1 p. 97 in Golub & van Loan, "Matrix Computations").     det(X) = det(P')*det(L)*det(U) = det(P')*1*prod(diag(U))     Needs LU-factorization of complex matrices (LAPACK)  */  std::complex<double> det(const cmat &X)  {    it_assert_debug(X.rows()==X.cols(),"det : Only square matrices");    int i;    cmat L, U;    ivec p;    double s=1.0;    lu(X,L,U,p); // calculate LU-factorisation    std::complex<double> temp=U(0,0);    for (i=1;i<X.rows();i++) {      temp*=U(i,i);    }    // Calculate det(P'). Equal to (-1)^(no row changes)    for (i=0; i<p.size(); i++)      if (i != p(i))	s *=-1.0;    return temp*s;  }} // namespace itpp

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -