⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cholesky.h

📁 强大的C++库
💻 H
字号:
/*! * \file * \brief Definitions of Cholesky factorisation functions * \author Tony Ottosson * * ------------------------------------------------------------------------- * * IT++ - C++ library of mathematical, signal processing, speech processing, *        and communications classes and functions * * Copyright (C) 1995-2008  (see AUTHORS file for a list of contributors) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * ------------------------------------------------------------------------- */#ifndef CHOLESKY_H#define CHOLESKY_H#include <itpp/base/mat.h>namespace itpp {  /*! \addtogroup matrixdecomp   */  //!@{  /*!    \brief Cholesky factorisation of real symmetric and positive definite matrix    The Cholesky factorisation of a real symmetric positive-definite matrix \f$\mathbf{X}\f$    of size \f$n \times n\f$ is given by    \f[    \mathbf{X} = \mathbf{F}^T \mathbf{F}    \f]    where \f$\mathbf{F}\f$ is an upper triangular \f$n \times n\f$ matrix.    Returns true if calculation succeeded. False otherwise.  */  bool chol(const mat &X, mat &F);  /*!    \brief Cholesky factorisation of real symmetric and positive definite matrix    The Cholesky factorisation of a real symmetric positive-definite matrix \f$\mathbf{X}\f$    of size \f$n \times n\f$ is given by    \f[    \mathbf{X} = \mathbf{F}^T \mathbf{F}    \f]    where \f$\mathbf{F}\f$ is an upper triangular \f$n \times n\f$ matrix.  */  mat chol(const mat &X);  /*!    \brief Cholesky factorisation of complex hermitian and positive-definite matrix    The Cholesky factorisation of a hermitian positive-definite matrix \f$\mathbf{X}\f$    of size \f$n \times n\f$ is given by    \f[    \mathbf{X} = \mathbf{F}^H \mathbf{F}    \f]    where \f$\mathbf{F}\f$ is an upper triangular \f$n \times n\f$ matrix.    Returns true if calculation succeeded. False otherwise.    If \c X is positive definite, true is returned and \c F=chol(X)    produces an upper triangular \c F. If also \c X is symmetric then \c F'*F = X.    If \c X is not positive definite, false is returned.  */  bool chol(const cmat &X, cmat &F);  /*!    \brief Cholesky factorisation of complex hermitian and positive-definite matrix    The Cholesky factorisation of a hermitian positive-definite matrix \f$\mathbf{X}\f$    of size \f$n \times n\f$ is given by    \f[    \mathbf{X} = \mathbf{F}^H \mathbf{F}    \f]    where \f$\mathbf{F}\f$ is an upper triangular \f$n \times n\f$ matrix.  */  cmat chol(const cmat &X);  //!@}} // namespace itpp#endif // #ifndef CHOLESKY_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -