⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 eigen.h

📁 强大的C++库
💻 H
字号:
/*! * \file * \brief Definitions of eigenvalue decomposition functions * \author Tony Ottosson * * ------------------------------------------------------------------------- * * IT++ - C++ library of mathematical, signal processing, speech processing, *        and communications classes and functions * * Copyright (C) 1995-2008  (see AUTHORS file for a list of contributors) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * ------------------------------------------------------------------------- */#ifndef EIGEN_H#define EIGEN_H#include <itpp/base/mat.h>namespace itpp {  /*!    \ingroup matrixdecomp    \brief Calculates the eigenvalues and eigenvectors of a symmetric real matrix    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real and symmetric \f$n \times n\f$    matrix \f$\mathbf{A}\f$ satisfies    \f[    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.    \f]    The eigenvectors are the columns of the matrix V.    True is returned if the calculation was successful. Otherwise false.    Uses the LAPACK routine DSYEV.  */  bool eig_sym(const mat &A, vec &d, mat &V);  /*!    \ingroup matrixdecomp    \brief Calculates the eigenvalues of a symmetric real matrix    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real and symmetric \f$n \times n\f$    matrix \f$\mathbf{A}\f$ satisfies    \f[    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.    \f]    True is returned if the calculation was successful. Otherwise false.    Uses the LAPACK routine DSYEV.  */  bool eig_sym(const mat &A, vec &d);  /*!    \ingroup matrixdecomp    \brief Calculates the eigenvalues of a symmetric real matrix    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real and symmetric \f$n \times n\f$    matrix \f$\mathbf{A}\f$ satisfies    \f[    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.    \f]    Uses the LAPACK routine DSYEV.  */  vec eig_sym(const mat &A);  /*!    \ingroup matrixdecomp    \brief Calculates the eigenvalues and eigenvectors of a hermitian complex matrix    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex and hermitian \f$n \times n\f$    matrix \f$\mathbf{A}\f$ satisfies    \f[    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.    \f]    The eigenvectors are the columns of the matrix V.    True is returned if the calculation was successful. Otherwise false.    Uses the LAPACK routine ZHEEV.  */  bool eig_sym(const cmat &A, vec &d, cmat &V);  /*!    \ingroup matrixdecomp    \brief Calculates the eigenvalues of a hermitian complex matrix    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex and hermitian \f$n \times n\f$    matrix \f$\mathbf{A}\f$ satisfies    \f[    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.    \f]    True is returned if the calculation was successful. Otherwise false.    Uses the LAPACK routine ZHEEV.  */  bool eig_sym(const cmat &A, vec &d);  /*!    \ingroup matrixdecomp    \brief Calculates the eigenvalues of a hermitian complex matrix    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex and hermitian \f$n \times n\f$    matrix \f$\mathbf{A}\f$ satisfies    \f[    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.    \f]    Uses the LAPACK routine ZHEEV.  */  vec eig_sym(const cmat &A);  /*!    \ingroup matrixdecomp    \brief Calculates the eigenvalues and eigenvectors of a real non-symmetric matrix    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real \f$n \times n\f$    matrix \f$\mathbf{A}\f$ satisfies    \f[    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.    \f]    The eigenvectors are the columns of the matrix V.    True is returned if the calculation was successful. Otherwise false.    Uses the LAPACK routine DGEEV.  */  bool eig(const mat &A, cvec &d, cmat &V);  /*!    \ingroup matrixdecomp    \brief Calculates the eigenvalues of a real non-symmetric matrix    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real \f$n \times n\f$    matrix \f$\mathbf{A}\f$ satisfies    \f[    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.    \f]    True is returned if the calculation was successful. Otherwise false.    Uses the LAPACK routine DGEEV.  */  bool eig(const mat &A, cvec &d);  /*!    \ingroup matrixdecomp    \brief Calculates the eigenvalues of a real non-symmetric matrix    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the real \f$n \times n\f$    matrix \f$\mathbf{A}\f$ satisfies    \f[    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.    \f]    Uses the LAPACK routine DGEEV.  */  cvec eig(const mat &A);  /*!    \ingroup matrixdecomp    \brief Calculates the eigenvalues and eigenvectors of a complex non-hermitian matrix    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex \f$n \times n\f$    matrix \f$\mathbf{A}\f$ satisfies    \f[    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.    \f]    The eigenvectors are the columns of the matrix V.    True is returned if the calculation was successful. Otherwise false.    Uses the LAPACK routine ZGEEV.  */  bool eig(const cmat &A, cvec &d, cmat &V);  /*!    \ingroup matrixdecomp    \brief Calculates the eigenvalues of a complex non-hermitian matrix    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex \f$n \times n\f$    matrix \f$\mathbf{A}\f$ satisfies    \f[    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.    \f]    True is returned if the calculation was successful. Otherwise false.    Uses the LAPACK routine ZGEEV.  */  bool eig(const cmat &A, cvec &d);  /*!    \ingroup matrixdecomp    \brief Calculates the eigenvalues of a complex non-hermitian matrix    The Eigenvalues \f$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})\f$ and the eigenvectors    \f$\mathbf{v}_i, \: i=0, \ldots, n-1\f$ of the complex \f$n \times n\f$    matrix \f$\mathbf{A}\f$ satisfies    \f[    \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1.    \f]    Uses the LAPACK routine ZGEEV.  */  cvec eig(const cmat &A);} // namespace itpp#endif // #ifndef EIGEN_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -