⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 schur.h

📁 强大的C++库
💻 H
字号:
/*! * \file * \brief Definitions of Schur decomposition functions * \author Adam Piatyszek * * ------------------------------------------------------------------------- * * IT++ - C++ library of mathematical, signal processing, speech processing, *        and communications classes and functions * * Copyright (C) 1995-2008  (see AUTHORS file for a list of contributors) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * ------------------------------------------------------------------------- */#ifndef SCHUR_H#define SCHUR_H#include <itpp/base/mat.h>namespace itpp {  /*!   * \ingroup matrixdecomp   * \brief Schur decomposition of a real matrix   *   * This function computes the Schur form of a square real matrix   * \f$ \mathbf{A} \f$. The Schur decomposition satisfies the   * following equation:   * \f[ \mathbf{U} \mathbf{T} \mathbf{U}^{T} = \mathbf{A} \f]   * where: \f$ \mathbf{U} \f$ is a unitary, \f$ \mathbf{T} \f$ is upper   * quasi-triangular, and \f$ \mathbf{U}^{T} \f$ is the transposed   * \f$ \mathbf{U} \f$ matrix.   *   * The upper quasi-triangular matrix may have \f$ 2 \times 2 \f$ blocks on   * its diagonal.   *   * Uses the LAPACK routine DGEES.   */  bool schur(const mat &A, mat &U, mat &T);  /*!   * \ingroup matrixdecomp   * \brief Schur decomposition of a real matrix   *   * This function computes the Schur form of a square real matrix   * \f$ \mathbf{A} \f$. The Schur decomposition satisfies the   * following equation:   * \f[ \mathbf{U} \mathbf{T} \mathbf{U}^{T} = \mathbf{A} \f]   * where: \f$ \mathbf{U} \f$ is a unitary, \f$ \mathbf{T} \f$ is upper   * quasi-triangular, and \f$ \mathbf{U}^{T} \f$ is the transposed   * \f$ \mathbf{U} \f$ matrix.   *   * The upper quasi-triangular matrix may have \f$ 2 \times 2 \f$ blocks on   * its diagonal.   *   * \return  Real Schur matrix \f$ \mathbf{T} \f$   *   * uses the LAPACK routine DGEES.   */  mat schur(const mat &A);  /*!   * \ingroup matrixdecomp   * \brief Schur decomposition of a complex matrix   *   * This function computes the Schur form of a square complex matrix   * \f$ \mathbf{A} \f$. The Schur decomposition satisfies   * the following equation:   * \f[ \mathbf{U} \mathbf{T} \mathbf{U}^{H} = \mathbf{A} \f]   * where: \f$ \mathbf{U} \f$ is a unitary, \f$ \mathbf{T} \f$ is upper   * triangular, and \f$ \mathbf{U}^{H} \f$ is the Hermitian   * transposition of the \f$ \mathbf{U} \f$ matrix.   *   * Uses the LAPACK routine ZGEES.   */  bool schur(const cmat &A, cmat &U, cmat &T);  /*!   * \ingroup matrixdecomp   * \brief Schur decomposition of a complex matrix   *   * This function computes the Schur form of a square complex matrix   * \f$ \mathbf{A} \f$. The Schur decomposition satisfies   * the following equation:   * \f[ \mathbf{U} \mathbf{T} \mathbf{U}^{H} = \mathbf{A} \f]   * where: \f$ \mathbf{U} \f$ is a unitary, \f$ \mathbf{T} \f$ is upper   * triangular, and \f$ \mathbf{U}^{H} \f$ is the Hermitian   * transposition of the \f$ \mathbf{U} \f$ matrix.   *   * \return  Complex Schur matrix \f$ \mathbf{T} \f$   *   * Uses the LAPACK routine ZGEES.   */  cmat schur(const cmat &A);} // namespace itpp#endif // #ifndef SCHUR_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -