📄 ls_solve.h
字号:
/*! * \file * \brief Definitions of functions for solving linear equation systems * \author Tony Ottosson * * ------------------------------------------------------------------------- * * IT++ - C++ library of mathematical, signal processing, speech processing, * and communications classes and functions * * Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * ------------------------------------------------------------------------- */#ifndef LS_SOLVE_H#define LS_SOLVE_H#include <itpp/base/mat.h>namespace itpp { /*! \addtogroup linearequations */ //!@{ /*! \brief Solve linear equation system by LU factorisation. Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix. Uses the LAPACK routine DGESV. */ bool ls_solve(const mat &A, const vec &b, vec &x); /*! \brief Solve linear equation system by LU factorisation. Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix. Uses the LAPACK routine DGESV. */ vec ls_solve(const mat &A, const vec &b); /*! \brief Solve multiple linear equations by LU factorisation. Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix. Uses the LAPACK routine DGESV. */ bool ls_solve(const mat &A, const mat &B, mat &X); /*! \brief Solve multiple linear equations by LU factorisation. Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix. Uses the LAPACK routine DGESV. */ mat ls_solve(const mat &A, const mat &B); /*! \brief Solve linear equation system by LU factorisation. Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix. Uses the LAPACK routine ZGESV. */ bool ls_solve(const cmat &A, const cvec &b, cvec &x); /*! \brief Solve linear equation system by LU factorisation. Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix. Uses the LAPACK routine ZGESV. */ cvec ls_solve(const cmat &A, const cvec &b); /*! \brief Solve multiple linear equations by LU factorisation. Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix. Uses the LAPACK routine ZGESV. */ bool ls_solve(const cmat &A, const cmat &B, cmat &X); /*! \brief Solve multiple linear equations by LU factorisation. Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix. Uses the LAPACK routine ZGESV. */ cmat ls_solve(const cmat &A, const cmat &B); /*! \brief Solve linear equation system by Cholesky factorisation. Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a symmetric positive definite \f$n \times n\f$ matrix. Uses the LAPACK routine DPOSV. */ bool ls_solve_chol(const mat &A, const vec &b, vec &x); /*! \brief Solve linear equation system by Cholesky factorisation. Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a symmetric positive definite \f$n \times n\f$ matrix. Uses the LAPACK routine DPOSV. */ vec ls_solve_chol(const mat &A, const vec &b); /*! \brief Solve linear equation system by Cholesky factorisation. Solves the linear system \f$AX=B\f$, where \f$A\f$ is a symmetric positive definite \f$n \times n\f$ matrix. Uses the LAPACK routine DPOSV. */ bool ls_solve_chol(const mat &A, const mat &B, mat &X); /*! \brief Solve linear equation system by Cholesky factorisation. Solves the linear system \f$AX=B\f$, where \f$A\f$ is a symmetric positive definite \f$n \times n\f$ matrix. Uses the LAPACK routine DPOSV. */ mat ls_solve_chol(const mat &A, const mat &B); /*! \brief Solve linear equation system by Cholesky factorisation. Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a Hermitian positive definite \f$n \times n\f$ matrix. Uses the LAPACK routine ZPOSV. */ bool ls_solve_chol(const cmat &A, const cvec &b, cvec &x); /*! \brief Solve linear equation system by Cholesky factorisation. Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a Hermitian positive definite \f$n \times n\f$ matrix. Uses the LAPACK routine ZPOSV. */ cvec ls_solve_chol(const cmat &A, const cvec &b); /*! \brief Solve linear equation system by Cholesky factorisation. Solves the linear system \f$AX=B\f$, where \f$A\f$ is a Hermitian positive definite \f$n \times n\f$ matrix. Uses the LAPACK routine ZPOSV. */ bool ls_solve_chol(const cmat &A, const cmat &B, cmat &X); /*! \brief Solve linear equation system by Cholesky factorisation. Solves the linear system \f$AX=B\f$, where \f$A\f$ is a Hermitian positive definite \f$n \times n\f$ matrix. Uses the LAPACK routine ZPOSV. */ cmat ls_solve_chol(const cmat &A, const cmat &B); /*! \brief Solves overdetermined linear equation systems. Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. Uses QR-factorization and is built upon the LAPACK routine DGELS. */ bool ls_solve_od(const mat &A, const vec &b, vec &x); /*! \brief Solves overdetermined linear equation systems. Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS. */ vec ls_solve_od(const mat &A, const vec &b); /*! \brief Solves overdetermined linear equation systems. Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS. */ bool ls_solve_od(const mat &A, const mat &B, mat &X); /*! \brief Solves overdetermined linear equation systems. Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS. */ mat ls_solve_od(const mat &A, const mat &B); /*! \brief Solves overdetermined linear equation systems. Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. Uses QR-factorization and is built upon the LAPACK routine ZGELS. */ bool ls_solve_od(const cmat &A, const cvec &b, cvec &x); /*! \brief Solves overdetermined linear equation systems. Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS. */ cvec ls_solve_od(const cmat &A, const cvec &b); /*! \brief Solves overdetermined linear equation systems. Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$. Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -