⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ls_solve.h

📁 强大的C++库
💻 H
📖 第 1 页 / 共 2 页
字号:
/*! * \file * \brief Definitions of functions for solving linear equation systems * \author Tony Ottosson * * ------------------------------------------------------------------------- * * IT++ - C++ library of mathematical, signal processing, speech processing, *        and communications classes and functions * * Copyright (C) 1995-2008  (see AUTHORS file for a list of contributors) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * ------------------------------------------------------------------------- */#ifndef LS_SOLVE_H#define LS_SOLVE_H#include <itpp/base/mat.h>namespace itpp {  /*! \addtogroup linearequations   */  //!@{  /*! \brief Solve linear equation system by LU factorisation.  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix.  Uses the LAPACK routine DGESV.  */  bool ls_solve(const mat &A, const vec &b, vec &x);  /*! \brief Solve linear equation system by LU factorisation.  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix.  Uses the LAPACK routine DGESV.  */  vec ls_solve(const mat &A, const vec &b);  /*! \brief Solve multiple linear equations by LU factorisation.  Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix.  Uses the LAPACK routine DGESV.  */  bool ls_solve(const mat &A, const mat &B, mat &X);  /*! \brief Solve multiple linear equations by LU factorisation.  Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix.  Uses the LAPACK routine DGESV.  */  mat ls_solve(const mat &A, const mat &B);  /*! \brief Solve linear equation system by LU factorisation.  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix.  Uses the LAPACK routine ZGESV.  */  bool ls_solve(const cmat &A, const cvec &b, cvec &x);  /*! \brief Solve linear equation system by LU factorisation.  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a \f$n \times n\f$ matrix.  Uses the LAPACK routine ZGESV.  */  cvec ls_solve(const cmat &A, const cvec &b);  /*! \brief Solve multiple linear equations by LU factorisation.  Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix.  Uses the LAPACK routine ZGESV.  */  bool ls_solve(const cmat &A, const cmat &B, cmat &X);  /*! \brief Solve multiple linear equations by LU factorisation.  Solves the linear system \f$AX=B\f$. Here \f$A\f$ is a nonsingular \f$n \times n\f$ matrix.  Uses the LAPACK routine ZGESV.  */  cmat ls_solve(const cmat &A, const cmat &B);  /*! \brief Solve linear equation system by Cholesky factorisation.  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a symmetric positive definite \f$n \times n\f$ matrix.  Uses the LAPACK routine DPOSV.  */  bool ls_solve_chol(const mat &A, const vec &b, vec &x);  /*! \brief Solve linear equation system by Cholesky factorisation.  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a symmetric positive definite \f$n \times n\f$ matrix.  Uses the LAPACK routine DPOSV.  */  vec ls_solve_chol(const mat &A, const vec &b);  /*! \brief Solve linear equation system by Cholesky factorisation.  Solves the linear system \f$AX=B\f$, where \f$A\f$ is a symmetric positive definite \f$n \times n\f$ matrix.  Uses the LAPACK routine DPOSV.  */  bool ls_solve_chol(const mat &A, const mat &B, mat &X);  /*! \brief Solve linear equation system by Cholesky factorisation.  Solves the linear system \f$AX=B\f$, where \f$A\f$ is a symmetric positive definite \f$n \times n\f$ matrix.  Uses the LAPACK routine DPOSV.  */  mat ls_solve_chol(const mat &A, const mat &B);  /*! \brief Solve linear equation system by Cholesky factorisation.  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a Hermitian positive definite \f$n \times n\f$ matrix.  Uses the LAPACK routine ZPOSV.  */  bool ls_solve_chol(const cmat &A, const cvec &b, cvec &x);  /*! \brief Solve linear equation system by Cholesky factorisation.  Solves the linear system \f$Ax=b\f$, where \f$A\f$ is a Hermitian positive definite \f$n \times n\f$ matrix.  Uses the LAPACK routine ZPOSV.  */  cvec ls_solve_chol(const cmat &A, const cvec &b);  /*! \brief Solve linear equation system by Cholesky factorisation.  Solves the linear system \f$AX=B\f$, where \f$A\f$ is a Hermitian positive definite \f$n \times n\f$ matrix.  Uses the LAPACK routine ZPOSV.  */  bool ls_solve_chol(const cmat &A, const cmat &B, cmat &X);  /*! \brief Solve linear equation system by Cholesky factorisation.  Solves the linear system \f$AX=B\f$, where \f$A\f$ is a Hermitian positive definite \f$n \times n\f$ matrix.  Uses the LAPACK routine ZPOSV.  */  cmat ls_solve_chol(const cmat &A, const cmat &B);  /*! \brief Solves overdetermined linear equation systems.  Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$.  Uses QR-factorization and is built upon the LAPACK routine DGELS.  */  bool ls_solve_od(const mat &A, const vec &b, vec &x);  /*! \brief Solves overdetermined linear equation systems.  Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$.  Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS.  */  vec ls_solve_od(const mat &A, const vec &b);  /*! \brief Solves overdetermined linear equation systems.  Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$.  Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS.  */  bool ls_solve_od(const mat &A, const mat &B, mat &X);  /*! \brief Solves overdetermined linear equation systems.  Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$.  Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine DGELS.  */  mat ls_solve_od(const mat &A, const mat &B);  /*! \brief Solves overdetermined linear equation systems.  Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$.  Uses QR-factorization and is built upon the LAPACK routine ZGELS.  */  bool ls_solve_od(const cmat &A, const cvec &b, cvec &x);  /*! \brief Solves overdetermined linear equation systems.  Solves the overdetermined linear system \f$Ax=b\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$.  Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS.  */  cvec ls_solve_od(const cmat &A, const cvec &b);  /*! \brief Solves overdetermined linear equation systems.  Solves the overdetermined linear system \f$AX=B\f$, where \f$A\f$ is a \f$m \times n\f$ matrix and \f$m \geq n\f$.  Uses QR-factorization and assumes that \f$A\f$ is full rank. Based on the LAPACK routine ZGELS.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -