📄 gamma.cpp
字号:
/*! * \file * \brief Implementation of gamma functions * \author Adam Piatyszek * * ------------------------------------------------------------------------- * * IT++ - C++ library of mathematical, signal processing, speech processing, * and communications classes and functions * * Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * ------------------------------------------------------------------------- * * This is slightly modified routine from the Cephes library: * http://www.netlib.org/cephes/ */#include <itpp/base/bessel/bessel_internal.h>#include <itpp/base/itassert.h>#include <itpp/base/math/misc.h> /* * Gamma function * * * SYNOPSIS: * * double x, y, gam(); * extern int sgngam; * * y = gam( x ); * * * DESCRIPTION: * * Returns gamma function of the argument. The result is * correctly signed, and the sign (+1 or -1) is also * returned in a global (extern) variable named sgngam. * This variable is also filled in by the logarithmic gamma * function lgam(). * * Arguments |x| <= 34 are reduced by recurrence and the function * approximated by a rational function of degree 6/7 in the * interval (2,3). Large arguments are handled by Stirling's * formula. Large negative arguments are made positive using * a reflection formula. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -170,-33 20000 2.3e-15 3.3e-16 * IEEE -33, 33 20000 9.4e-16 2.2e-16 * IEEE 33, 171.6 20000 2.3e-15 3.2e-16 * * Error for arguments outside the test range will be larger * owing to error amplification by the exponential function. */ /* * Natural logarithm of gamma function * * * SYNOPSIS: * * double x, y, lgam(); * extern int sgngam; * * y = lgam( x ); * * * DESCRIPTION: * * Returns the base e (2.718...) logarithm of the absolute * value of the gamma function of the argument. * The sign (+1 or -1) of the gamma function is returned in a * global (extern) variable named sgngam. * * For arguments greater than 13, the logarithm of the gamma * function is approximated by the logarithmic version of * Stirling's formula using a polynomial approximation of * degree 4. Arguments between -33 and +33 are reduced by * recurrence to the interval [2,3] of a rational approximation. * The cosecant reflection formula is employed for arguments * less than -33. * * Arguments greater than MAXLGM return INFINITY and an error * message. MAXLGM = 2.556348e305 for IEEE arithmetic. * * * ACCURACY: * * arithmetic domain # trials peak rms * IEEE 0, 3 28000 5.4e-16 1.1e-16 * IEEE 2.718, 2.556e305 40000 3.5e-16 8.3e-17 * The error criterion was relative when the function magnitude * was greater than one but absolute when it was less than one. * * The following test used the relative error criterion, though * at certain points the relative error could be much higher than * indicated. * IEEE -200, -4 10000 4.8e-16 1.3e-16 */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier */#ifndef INFINITY# define INFINITY 1.79769313486231570815E308 /* 2**1024*(1-MACHEP) */#endif#ifndef NAN# define NAN 0.0#endif static double P[] = { 1.60119522476751861407E-4, 1.19135147006586384913E-3, 1.04213797561761569935E-2, 4.76367800457137231464E-2, 2.07448227648435975150E-1, 4.94214826801497100753E-1, 9.99999999999999996796E-1 }; static double Q[] = { -2.31581873324120129819E-5, 5.39605580493303397842E-4, -4.45641913851797240494E-3, 1.18139785222060435552E-2, 3.58236398605498653373E-2, -2.34591795718243348568E-1, 7.14304917030273074085E-2, 1.00000000000000000320E0 }; static double LOGPI = 1.14472988584940017414; /* Stirling's formula for the gamma function */ static double STIR[5] = { 7.87311395793093628397E-4, -2.29549961613378126380E-4, -2.68132617805781232825E-3, 3.47222221605458667310E-3, 8.33333333333482257126E-2, }; static double MAXSTIR = 143.01608; static double SQTPI = 2.50662827463100050242E0; static double MAXLGM = 2.556348e305; int sgngam = 0; /*! * \brief Gamma function computed by Stirling's formula. * The polynomial STIR is valid for 33 <= x <= 172. */ static double stirf(double x) { double y, w, v; w = 1.0/x; w = 1.0 + w * polevl( w, STIR, 4 ); y = exp(x); if( x > MAXSTIR ) { /* Avoid overflow in pow() */ v = pow( x, 0.5 * x - 0.25 ); y = v * (v / y); } else { y = pow( x, x - 0.5 ) / y; } y = SQTPI * y * w; return( y ); } double gam(double x) { double p, q, z; int i; sgngam = 1; if( std::isnan(x) ) return(x); if( std::isinf(x) == 1 ) return(x); if( std::isinf(x) == -1 ) return(NAN); q = fabs(x); if( q > 33.0 ) { if( x < 0.0 ) { p = floor(q); if( p == q ) { gamnan: it_warning("gam(): argument domain error"); return (NAN); } i = int(p); if( (i & 1) == 0 ) sgngam = -1; z = q - p; if( z > 0.5 ) { p += 1.0; z = q - p; } z = q * sin( itpp::pi * z ); if( z == 0.0 ) { return( sgngam * INFINITY); } z = fabs(z); z = itpp::pi / (z * stirf(q)); } else { z = stirf(x); } return( sgngam * z ); } z = 1.0; while( x >= 3.0 ) { x -= 1.0; z *= x; } while( x < 0.0 ) { if( x > -1.E-9 ) goto small; z /= x; x += 1.0; } while( x < 2.0 ) { if( x < 1.e-9 ) goto small; z /= x; x += 1.0; } if( x == 2.0 ) return(z); x -= 2.0; p = polevl( x, P, 6 ); q = polevl( x, Q, 7 ); return( z * p / q ); small: if( x == 0.0 ) { goto gamnan; } else return( z/((1.0 + 0.5772156649015329 * x) * x) ); } /* A[]: Stirling's formula expansion of log gamma * B[], C[]: log gamma function between 2 and 3 */ static double A[] = { 8.11614167470508450300E-4, -5.95061904284301438324E-4, 7.93650340457716943945E-4, -2.77777777730099687205E-3, 8.33333333333331927722E-2 }; static double B[] = { -1.37825152569120859100E3, -3.88016315134637840924E4, -3.31612992738871184744E5, -1.16237097492762307383E6, -1.72173700820839662146E6, -8.53555664245765465627E5 }; static double C[] = { /* 1.00000000000000000000E0, */ -3.51815701436523470549E2, -1.70642106651881159223E4, -2.20528590553854454839E5, -1.13933444367982507207E6, -2.53252307177582951285E6, -2.01889141433532773231E6 }; /* log( sqrt( 2*pi ) ) */ static double LS2PI = 0.91893853320467274178; /*! Logarithm of gamma function */ double lgam(double x) { double p, q, u, w, z; int i; sgngam = 1; if( std::isnan(x) ) return(x); if( !std::isfinite(x) ) return(INFINITY); if( x < -34.0 ) { q = -x; w = lgam(q); /* note this modifies sgngam! */ p = floor(q); if( p == q ) { lgsing: it_warning("lgam(): function singularity"); return (INFINITY); } i = int(p); if( (i & 1) == 0 ) sgngam = -1; else sgngam = 1; z = q - p; if( z > 0.5 ) { p += 1.0; z = p - q; } z = q * sin(itpp::pi * z); if( z == 0.0 ) goto lgsing; /* z = log(PI) - log( z ) - w;*/ z = LOGPI - log( z ) - w; return( z ); } if( x < 13.0 ) { z = 1.0; p = 0.0; u = x; while( u >= 3.0 ) { p -= 1.0; u = x + p; z *= u; } while( u < 2.0 ) { if( u == 0.0 ) goto lgsing; z /= u; p += 1.0; u = x + p; } if( z < 0.0 ) { sgngam = -1; z = -z; } else sgngam = 1; if( u == 2.0 ) return( log(z) ); p -= 2.0; x = x + p; p = x * polevl( x, B, 5 ) / p1evl( x, C, 6); return( log(z) + p ); } if( x > MAXLGM ) { return( sgngam * INFINITY ); } q = ( x - 0.5 ) * log(x) - x + LS2PI; if( x > 1.0e8 ) return( q ); p = 1.0/(x*x); if( x >= 1000.0 ) q += ((7.9365079365079365079365e-4 * p - 2.7777777777777777777778e-3) *p + 0.0833333333333333333333) / x; else q += polevl( p, A, 4 ) / x; return( q ); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -