📄 smc91x.h
字号:
/* 5 */ "SMC91C95", /* 6 */ "SMC91C96", /* 7 */ "SMC91C100", /* 8 */ "SMC91C100FD", /* 9 */ "SMC91C11xFD", NULL, NULL, NULL, NULL, NULL, NULL};/* . Transmit status bits*/#define TS_SUCCESS 0x0001#define TS_LOSTCAR 0x0400#define TS_LATCOL 0x0200#define TS_16COL 0x0010/* . Receive status bits*/#define RS_ALGNERR 0x8000#define RS_BRODCAST 0x4000#define RS_BADCRC 0x2000#define RS_ODDFRAME 0x1000#define RS_TOOLONG 0x0800#define RS_TOOSHORT 0x0400#define RS_MULTICAST 0x0001#define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)// PHY Typesenum { PHY_LAN83C183 = 1, // LAN91C111 Internal PHY PHY_LAN83C180};// PHY Register Addresses (LAN91C111 Internal PHY)// PHY Control Register#define PHY_CNTL_REG 0x00#define PHY_CNTL_RST 0x8000 // 1=PHY Reset#define PHY_CNTL_LPBK 0x4000 // 1=PHY Loopback#define PHY_CNTL_SPEED 0x2000 // 1=100Mbps, 0=10Mpbs#define PHY_CNTL_ANEG_EN 0x1000 // 1=Enable Auto negotiation#define PHY_CNTL_PDN 0x0800 // 1=PHY Power Down mode#define PHY_CNTL_MII_DIS 0x0400 // 1=MII 4 bit interface disabled#define PHY_CNTL_ANEG_RST 0x0200 // 1=Reset Auto negotiate#define PHY_CNTL_DPLX 0x0100 // 1=Full Duplex, 0=Half Duplex#define PHY_CNTL_COLTST 0x0080 // 1= MII Colision Test// PHY Status Register#define PHY_STAT_REG 0x01#define PHY_STAT_CAP_T4 0x8000 // 1=100Base-T4 capable#define PHY_STAT_CAP_TXF 0x4000 // 1=100Base-X full duplex capable#define PHY_STAT_CAP_TXH 0x2000 // 1=100Base-X half duplex capable#define PHY_STAT_CAP_TF 0x1000 // 1=10Mbps full duplex capable#define PHY_STAT_CAP_TH 0x0800 // 1=10Mbps half duplex capable#define PHY_STAT_CAP_SUPR 0x0040 // 1=recv mgmt frames with not preamble#define PHY_STAT_ANEG_ACK 0x0020 // 1=ANEG has completed#define PHY_STAT_REM_FLT 0x0010 // 1=Remote Fault detected#define PHY_STAT_CAP_ANEG 0x0008 // 1=Auto negotiate capable#define PHY_STAT_LINK 0x0004 // 1=valid link#define PHY_STAT_JAB 0x0002 // 1=10Mbps jabber condition#define PHY_STAT_EXREG 0x0001 // 1=extended registers implemented// PHY Identifier Registers#define PHY_ID1_REG 0x02 // PHY Identifier 1#define PHY_ID2_REG 0x03 // PHY Identifier 2// PHY Auto-Negotiation Advertisement Register#define PHY_AD_REG 0x04#define PHY_AD_NP 0x8000 // 1=PHY requests exchange of Next Page#define PHY_AD_ACK 0x4000 // 1=got link code word from remote#define PHY_AD_RF 0x2000 // 1=advertise remote fault#define PHY_AD_T4 0x0200 // 1=PHY is capable of 100Base-T4#define PHY_AD_TX_FDX 0x0100 // 1=PHY is capable of 100Base-TX FDPLX#define PHY_AD_TX_HDX 0x0080 // 1=PHY is capable of 100Base-TX HDPLX#define PHY_AD_10_FDX 0x0040 // 1=PHY is capable of 10Base-T FDPLX#define PHY_AD_10_HDX 0x0020 // 1=PHY is capable of 10Base-T HDPLX#define PHY_AD_CSMA 0x0001 // 1=PHY is capable of 802.3 CMSA// PHY Auto-negotiation Remote End Capability Register#define PHY_RMT_REG 0x05// Uses same bit definitions as PHY_AD_REG// PHY Configuration Register 1#define PHY_CFG1_REG 0x10#define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled#define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled#define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down#define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler#define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable#define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled#define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm)#define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db#define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust#define PHY_CFG1_TLVL_MASK 0x003C#define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time// PHY Configuration Register 2#define PHY_CFG2_REG 0x11#define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled#define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled#define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt)#define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo// PHY Status Output (and Interrupt status) Register#define PHY_INT_REG 0x12 // Status Output (Interrupt Status)#define PHY_INT_INT 0x8000 // 1=bits have changed since last read#define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected#define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync#define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx#define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx#define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx#define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected#define PHY_INT_JAB 0x0100 // 1=Jabber detected#define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode#define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex// PHY Interrupt/Status Mask Register#define PHY_MASK_REG 0x13 // Interrupt Mask// Uses the same bit definitions as PHY_INT_REG/* * SMC91C96 ethernet config and status registers. * These are in the "attribute" space. */#define ECOR 0x8000#define ECOR_RESET 0x80#define ECOR_LEVEL_IRQ 0x40#define ECOR_WR_ATTRIB 0x04#define ECOR_ENABLE 0x01#define ECSR 0x8002#define ECSR_IOIS8 0x20#define ECSR_PWRDWN 0x04#define ECSR_INT 0x02/* * Macros to abstract register access according to the data bus * capabilities. Please try to use those and not the in/out primitives. * Note: the following macros do *not* select the bank -- this must * be done separately as needed in the main code. The SMC_REG() macro * only uses the bank argument for debugging purposes. */#if SMC_DEBUG > 0#define SMC_REG(reg, bank) \ ({ \ int __b = SMC_CURRENT_BANK(); \ if ((__b & ~0xf0) != (0x3300 | bank)) { \ printk( "%s: bank reg screwed (0x%04x)\n", \ CARDNAME, __b ); \ BUG(); \ } \ reg<<SMC_IO_SHIFT; \ })#else#define SMC_REG(reg, bank) (reg<<SMC_IO_SHIFT)#endif#if SMC_CAN_USE_8BIT#define SMC_GET_PN() SMC_inb( ioaddr, PN_REG )#define SMC_SET_PN(x) SMC_outb( x, ioaddr, PN_REG )#define SMC_GET_AR() SMC_inb( ioaddr, AR_REG )#define SMC_GET_TXFIFO() SMC_inb( ioaddr, TXFIFO_REG )#define SMC_GET_RXFIFO() SMC_inb( ioaddr, RXFIFO_REG )#define SMC_GET_INT() SMC_inb( ioaddr, INT_REG )#define SMC_ACK_INT(x) SMC_outb( x, ioaddr, INT_REG )#define SMC_GET_INT_MASK() SMC_inb( ioaddr, IM_REG )#define SMC_SET_INT_MASK(x) SMC_outb( x, ioaddr, IM_REG )#else#define SMC_GET_PN() (SMC_inw( ioaddr, PN_REG ) & 0xFF)#define SMC_SET_PN(x) SMC_outw( x, ioaddr, PN_REG )#define SMC_GET_AR() (SMC_inw( ioaddr, PN_REG ) >> 8)#define SMC_GET_TXFIFO() (SMC_inw( ioaddr, TXFIFO_REG ) & 0xFF)#define SMC_GET_RXFIFO() (SMC_inw( ioaddr, TXFIFO_REG ) >> 8)#define SMC_GET_INT() (SMC_inw( ioaddr, INT_REG ) & 0xFF)#define SMC_ACK_INT(x) \ do { \ long __flags; \ int __mask; \ __mask = SMC_inw( ioaddr, INT_REG ) & ~0xff; \ SMC_outw( __mask | (x), ioaddr, INT_REG ); \ } while (0)#define SMC_GET_INT_MASK() (SMC_inw( ioaddr, INT_REG ) >> 8)#define SMC_SET_INT_MASK(x) SMC_outw( (x) << 8, ioaddr, INT_REG )#endif#define SMC_CURRENT_BANK() SMC_inw( ioaddr, BANK_SELECT )#define SMC_SELECT_BANK(x) SMC_outw( x, ioaddr, BANK_SELECT )#define SMC_GET_BASE() SMC_inw( ioaddr, BASE_REG )#define SMC_SET_BASE(x) SMC_outw( x, ioaddr, BASE_REG )#define SMC_GET_CONFIG() SMC_inw( ioaddr, CONFIG_REG )#define SMC_SET_CONFIG(x) SMC_outw( x, ioaddr, CONFIG_REG )#define SMC_GET_COUNTER() SMC_inw( ioaddr, COUNTER_REG )#define SMC_GET_CTL() SMC_inw( ioaddr, CTL_REG )#define SMC_SET_CTL(x) SMC_outw( x, ioaddr, CTL_REG )#define SMC_GET_MII() SMC_inw( ioaddr, MII_REG )#define SMC_SET_MII(x) SMC_outw( x, ioaddr, MII_REG )#define SMC_GET_MIR() SMC_inw( ioaddr, MIR_REG )#define SMC_SET_MIR(x) SMC_outw( x, ioaddr, MIR_REG )#define SMC_GET_MMU_CMD() SMC_inw( ioaddr, MMU_CMD_REG )#define SMC_SET_MMU_CMD(x) SMC_outw( x, ioaddr, MMU_CMD_REG )#define SMC_GET_FIFO() SMC_inw( ioaddr, FIFO_REG )#define SMC_GET_PTR() SMC_inw( ioaddr, PTR_REG )#define SMC_SET_PTR(x) SMC_outw( x, ioaddr, PTR_REG )#define SMC_GET_RCR() SMC_inw( ioaddr, RCR_REG )#define SMC_SET_RCR(x) SMC_outw( x, ioaddr, RCR_REG )#define SMC_GET_REV() SMC_inw( ioaddr, REV_REG )#define SMC_GET_RPC() SMC_inw( ioaddr, RPC_REG )#define SMC_SET_RPC(x) SMC_outw( x, ioaddr, RPC_REG )#define SMC_GET_TCR() SMC_inw( ioaddr, TCR_REG )#define SMC_SET_TCR(x) SMC_outw( x, ioaddr, TCR_REG )#ifndef SMC_GET_MAC_ADDR#define SMC_GET_MAC_ADDR(addr) \ do { \ unsigned int __v; \ __v = SMC_inw( ioaddr, ADDR0_REG ); \ addr[0] = __v; addr[1] = __v >> 8; \ __v = SMC_inw( ioaddr, ADDR1_REG ); \ addr[2] = __v; addr[3] = __v >> 8; \ __v = SMC_inw( ioaddr, ADDR2_REG ); \ addr[4] = __v; addr[5] = __v >> 8; \ } while (0)#endif#define SMC_SET_MAC_ADDR(addr) \ do { \ SMC_outw( addr[0]|(addr[1] << 8), ioaddr, ADDR0_REG ); \ SMC_outw( addr[2]|(addr[3] << 8), ioaddr, ADDR1_REG ); \ SMC_outw( addr[4]|(addr[5] << 8), ioaddr, ADDR2_REG ); \ } while (0)#define SMC_CLEAR_MCAST() \ do { \ SMC_outw( 0, ioaddr, MCAST_REG1 ); \ SMC_outw( 0, ioaddr, MCAST_REG2 ); \ SMC_outw( 0, ioaddr, MCAST_REG3 ); \ SMC_outw( 0, ioaddr, MCAST_REG4 ); \ } while (0)#define SMC_SET_MCAST(x) \ do { \ unsigned char *mt = (x); \ SMC_outw( mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1 ); \ SMC_outw( mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2 ); \ SMC_outw( mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3 ); \ SMC_outw( mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4 ); \ } while (0)#if SMC_CAN_USE_32BIT/* * Some setups just can't write 8 or 16 bits reliably when not aligned * to a 32 bit boundary. I tell you that exists! * We do the ones that can have their low parts written to 0 here. */#undef SMC_SELECT_BANK#define SMC_SELECT_BANK(x) SMC_outl( (x)<<16, ioaddr, 12<<SMC_IO_SHIFT )#undef SMC_SET_RPC#define SMC_SET_RPC(x) SMC_outl( (x)<<16, ioaddr, SMC_REG(8, 0) )#undef SMC_SET_PN#define SMC_SET_PN(x) SMC_outl( (x)<<16, ioaddr, SMC_REG(0, 2) )#undef SMC_SET_PTR#define SMC_SET_PTR(x) SMC_outl( (x)<<16, ioaddr, SMC_REG(4, 2) )#endif#if SMC_CAN_USE_32BIT#define SMC_PUT_PKT_HDR(status, length) \ SMC_outl( (status) | (length) << 16, ioaddr, DATA_REG )#define SMC_GET_PKT_HDR(status, length) \ do { \ unsigned int __val = SMC_inl( ioaddr, DATA_REG ); \ (status) = __val & 0xffff; \ (length) = __val >> 16; \ } while (0)#else#define SMC_PUT_PKT_HDR(status, length) \ do { \ SMC_outw( status, ioaddr, DATA_REG ); \ SMC_outw( length, ioaddr, DATA_REG ); \ } while (0)#define SMC_GET_PKT_HDR(status, length) \ do { \ (status) = SMC_inw( ioaddr, DATA_REG ); \ (length) = SMC_inw( ioaddr, DATA_REG ); \ } while (0)#endif#if SMC_CAN_USE_32BIT#define SMC_PUSH_DATA(p, l) \ do { \ char *__ptr = (char *)(p); \ int __len = (l); \ if (__len >= 2 && (long)__ptr & 2) { \ __len -= 2; \ SMC_outw( *((u16 *)__ptr)++, ioaddr, DATA_REG );\ } \ SMC_outsl( ioaddr, DATA_REG, __ptr, __len >> 2); \ if (__len & 2) { \ __ptr += (__len & ~3); \ SMC_outw( *((u16 *)__ptr), ioaddr, DATA_REG ); \ } \ } while (0)#define SMC_PULL_DATA(p, l) \ do { \ char *__ptr = (char *)(p); \ int __len = (l); \ if ((long)__ptr & 2) { \ /* \ * We want 32bit alignment here. \ * Since some buses perform a full 32bit \ * fetch even for 16bit data we can't use \ * SMC_inw() here. Back both source (on chip \ * and destination) pointers of 2 bytes. \ */ \ (long)__ptr &= ~2; \ __len += 2; \ SMC_SET_PTR( 2|PTR_READ|PTR_RCV|PTR_AUTOINC ); \ } \ __len += 2; \ SMC_insl( ioaddr, DATA_REG, __ptr, __len >> 2); \ } while (0)#elif SMC_CAN_USE_16BIT#define SMC_PUSH_DATA(p, l) SMC_outsw( ioaddr, DATA_REG, p, (l) >> 1 )#define SMC_PULL_DATA(p, l) SMC_insw ( ioaddr, DATA_REG, p, (l) >> 1 )#elif SMC_CAN_USE_8BIT#define SMC_PUSH_DATA(p, l) SMC_outsb( ioaddr, DATA_REG, p, l )#define SMC_PULL_DATA(p, l) SMC_insb ( ioaddr, DATA_REG, p, l )#endif#if ! SMC_CAN_USE_16BIT#define SMC_outw(x, ioaddr, reg) \ do { \ unsigned int __val16 = (x); \ SMC_outb( __val16, ioaddr, reg ); \ SMC_outb( __val16 >> 8, ioaddr, reg + 1 ); \ } while (0)#define SMC_inw(ioaddr, reg) \ ({ \ unsigned int __val16; \ __val16 = SMC_inb( ioaddr, reg ); \ __val16 |= SMC_inb( ioaddr, reg + 1 ) << 8; \ __val16; \ })#endif#endif /* _SMC91X_H_ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -