⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 clog.c

📁 数学运算库源码
💻 C
📖 第 1 页 / 共 2 页
字号:
void casin( z, w )cmplx *z, *w;{static cmplx ca, ct, zz, z2;double x, y;x = z->r;y = z->i;if( y == 0.0 )	{	if( fabs(x) > 1.0 )		{		w->r = PIO2;		w->i = 0.0;		mtherr( "casin", DOMAIN );		}	else		{		w->r = asin(x);		w->i = 0.0;		}	return;	}/* Power series expansion *//*b = cabs(z);if( b < 0.125 ){z2.r = (x - y) * (x + y);z2.i = 2.0 * x * y;cn = 1.0;n = 1.0;ca.r = x;ca.i = y;sum.r = x;sum.i = y;do	{	ct.r = z2.r * ca.r  -  z2.i * ca.i;	ct.i = z2.r * ca.i  +  z2.i * ca.r;	ca.r = ct.r;	ca.i = ct.i;	cn *= n;	n += 1.0;	cn /= n;	n += 1.0;	b = cn/n;	ct.r *= b;	ct.i *= b;	sum.r += ct.r;	sum.i += ct.i;	b = fabs(ct.r) + fabs(ct.i);	}while( b > MACHEP );w->r = sum.r;w->i = sum.i;return;}*/ca.r = x;ca.i = y;ct.r = -ca.i;	/* iz */ct.i = ca.r;	/* sqrt( 1 - z*z) *//* cmul( &ca, &ca, &zz ) */zz.r = (ca.r - ca.i) * (ca.r + ca.i);	/*x * x  -  y * y */zz.i = 2.0 * ca.r * ca.i;zz.r = 1.0 - zz.r;zz.i = -zz.i;csqrt( &zz, &z2 );cadd( &z2, &ct, &zz );clog( &zz, &zz );w->r = zz.i;	/* mult by 1/i = -i */w->i = -zz.r;return;}/*							cacos() * *	Complex circular arc cosine * * * * SYNOPSIS: * * void cacos(); * cmplx z, w; * * cacos( &z, &w ); * * * * DESCRIPTION: * * * w = arccos z  =  PI/2 - arcsin z. * * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      5200      1.6e-15      2.8e-16 *    IEEE      -10,+10     30000      1.8e-14      2.2e-15 */void cacos( z, w )cmplx *z, *w;{casin( z, w );w->r = PIO2  -  w->r;w->i = -w->i;}/*							catan() * *	Complex circular arc tangent * * * * SYNOPSIS: * * void catan(); * cmplx z, w; * * catan( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then *          1       (    2x     ) * Re w  =  - arctan(-----------)  +  k PI *          2       (     2    2) *                  (1 - x  - y ) * *               ( 2         2) *          1    (x  +  (y+1) ) * Im w  =  - log(------------) *          4    ( 2         2) *               (x  +  (y-1) ) * * Where k is an arbitrary integer. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      5900       1.3e-16     7.8e-18 *    IEEE      -10,+10     30000       2.3e-15     8.5e-17 * The check catan( ctan(z) )  =  z, with |x| and |y| < PI/2, * had peak relative error 1.5e-16, rms relative error * 2.9e-17.  See also clog(). */void catan( z, w )cmplx *z, *w;{double a, t, x, x2, y;x = z->r;y = z->i;if( (x == 0.0) && (y > 1.0) )	goto ovrf;x2 = x * x;a = 1.0 - x2 - (y * y);if( a == 0.0 )	goto ovrf;#if ANSICt = atan2( 2.0 * x, a )/2.0;#elset = atan2( a, 2.0 * x )/2.0;#endifw->r = redupi( t );t = y - 1.0;a = x2 + (t * t);if( a == 0.0 )	goto ovrf;t = y + 1.0;a = (x2 + (t * t))/a;w->i = log(a)/4.0;return;ovrf:mtherr( "catan", OVERFLOW );w->r = MAXNUM;w->i = MAXNUM;}/*							csinh * *	Complex hyperbolic sine * * * * SYNOPSIS: * * void csinh(); * cmplx z, w; * * csinh( &z, &w ); * * * DESCRIPTION: * * csinh z = (cexp(z) - cexp(-z))/2 *         = sinh x * cos y  +  i cosh x * sin y . * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       3.1e-16     8.2e-17 * */voidcsinh (z, w)     cmplx *z, *w;{  double x, y;  x = z->r;  y = z->i;  w->r = sinh (x) * cos (y);  w->i = cosh (x) * sin (y);}/*							casinh * *	Complex inverse hyperbolic sine * * * * SYNOPSIS: * * void casinh(); * cmplx z, w; * * casinh (&z, &w); * * * * DESCRIPTION: * * casinh z = -i casin iz . * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       1.8e-14     2.6e-15 * */voidcasinh (z, w)     cmplx *z, *w;{  cmplx u;  u.r = 0.0;  u.i = 1.0;  cmul( z, &u, &u );  casin( &u, w );  u.r = 0.0;  u.i = -1.0;  cmul( &u, w, w );}/*							ccosh * *	Complex hyperbolic cosine * * * * SYNOPSIS: * * void ccosh(); * cmplx z, w; * * ccosh (&z, &w); * * * * DESCRIPTION: * * ccosh(z) = cosh x  cos y + i sinh x sin y . * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       2.9e-16     8.1e-17 * */voidccosh (z, w)     cmplx *z, *w;{  double x, y;  x = z->r;  y = z->i;  w->r = cosh (x) * cos (y);  w->i = sinh (x) * sin (y);}/*							cacosh * *	Complex inverse hyperbolic cosine * * * * SYNOPSIS: * * void cacosh(); * cmplx z, w; * * cacosh (&z, &w); * * * * DESCRIPTION: * * acosh z = i acos z . * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       1.6e-14     2.1e-15 * */voidcacosh (z, w)     cmplx *z, *w;{  cmplx u;  cacos( z, w );  u.r = 0.0;  u.i = 1.0;  cmul( &u, w, w );}/*							ctanh * *	Complex hyperbolic tangent * * * * SYNOPSIS: * * void ctanh(); * cmplx z, w; * * ctanh (&z, &w); * * * * DESCRIPTION: * * tanh z = (sinh 2x  +  i sin 2y) / (cosh 2x + cos 2y) . * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       1.7e-14     2.4e-16 * *//* 5.253E-02,1.550E+00 1.643E+01,6.553E+00 1.729E-14  21355  */voidctanh (z, w)     cmplx *z, *w;{  double x, y, d;  x = z->r;  y = z->i;  d = cosh (2.0 * x) + cos (2.0 * y);  w->r = sinh (2.0 * x) / d;  w->i = sin (2.0 * y) / d;  return;}/*							catanh * *	Complex inverse hyperbolic tangent * * * * SYNOPSIS: * * void catanh(); * cmplx z, w; * * catanh (&z, &w); * * * * DESCRIPTION: * * Inverse tanh, equal to  -i catan (iz); * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       2.3e-16     6.2e-17 * */voidcatanh (z, w)     cmplx *z, *w;{  cmplx u;  u.r = 0.0;  u.i = 1.0;  cmul (z, &u, &u);  /* i z */  catan (&u, w);  u.r = 0.0;  u.i = -1.0;  cmul (&u, w, w);  /* -i catan iz */  return;}/*							cpow * *	Complex power function * * * * SYNOPSIS: * * void cpow(); * cmplx a, z, w; * * cpow (&a, &z, &w); * * * * DESCRIPTION: * * Raises complex A to the complex Zth power. * Definition is per AMS55 # 4.2.8, * analytically equivalent to cpow(a,z) = cexp(z clog(a)). * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       9.4e-15     1.5e-15 * */voidcpow (a, z, w)     cmplx *a, *z, *w;{  double x, y, r, theta, absa, arga;  x = z->r;  y = z->i;  absa = cabs (a);  if (absa == 0.0)    {      w->r = 0.0;      w->i = 0.0;      return;    }  arga = atan2 (a->i, a->r);  r = pow (absa, x);  theta = x * arga;  if (y != 0.0)    {      r = r * exp (-y * arga);      theta = theta + y * log (absa);    }  w->r = r * cos (theta);  w->i = r * sin (theta);  return;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -