📄 clog.c
字号:
void casin( z, w )cmplx *z, *w;{static cmplx ca, ct, zz, z2;double x, y;x = z->r;y = z->i;if( y == 0.0 ) { if( fabs(x) > 1.0 ) { w->r = PIO2; w->i = 0.0; mtherr( "casin", DOMAIN ); } else { w->r = asin(x); w->i = 0.0; } return; }/* Power series expansion *//*b = cabs(z);if( b < 0.125 ){z2.r = (x - y) * (x + y);z2.i = 2.0 * x * y;cn = 1.0;n = 1.0;ca.r = x;ca.i = y;sum.r = x;sum.i = y;do { ct.r = z2.r * ca.r - z2.i * ca.i; ct.i = z2.r * ca.i + z2.i * ca.r; ca.r = ct.r; ca.i = ct.i; cn *= n; n += 1.0; cn /= n; n += 1.0; b = cn/n; ct.r *= b; ct.i *= b; sum.r += ct.r; sum.i += ct.i; b = fabs(ct.r) + fabs(ct.i); }while( b > MACHEP );w->r = sum.r;w->i = sum.i;return;}*/ca.r = x;ca.i = y;ct.r = -ca.i; /* iz */ct.i = ca.r; /* sqrt( 1 - z*z) *//* cmul( &ca, &ca, &zz ) */zz.r = (ca.r - ca.i) * (ca.r + ca.i); /*x * x - y * y */zz.i = 2.0 * ca.r * ca.i;zz.r = 1.0 - zz.r;zz.i = -zz.i;csqrt( &zz, &z2 );cadd( &z2, &ct, &zz );clog( &zz, &zz );w->r = zz.i; /* mult by 1/i = -i */w->i = -zz.r;return;}/* cacos() * * Complex circular arc cosine * * * * SYNOPSIS: * * void cacos(); * cmplx z, w; * * cacos( &z, &w ); * * * * DESCRIPTION: * * * w = arccos z = PI/2 - arcsin z. * * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 5200 1.6e-15 2.8e-16 * IEEE -10,+10 30000 1.8e-14 2.2e-15 */void cacos( z, w )cmplx *z, *w;{casin( z, w );w->r = PIO2 - w->r;w->i = -w->i;}/* catan() * * Complex circular arc tangent * * * * SYNOPSIS: * * void catan(); * cmplx z, w; * * catan( &z, &w ); * * * * DESCRIPTION: * * If * z = x + iy, * * then * 1 ( 2x ) * Re w = - arctan(-----------) + k PI * 2 ( 2 2) * (1 - x - y ) * * ( 2 2) * 1 (x + (y+1) ) * Im w = - log(------------) * 4 ( 2 2) * (x + (y-1) ) * * Where k is an arbitrary integer. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 5900 1.3e-16 7.8e-18 * IEEE -10,+10 30000 2.3e-15 8.5e-17 * The check catan( ctan(z) ) = z, with |x| and |y| < PI/2, * had peak relative error 1.5e-16, rms relative error * 2.9e-17. See also clog(). */void catan( z, w )cmplx *z, *w;{double a, t, x, x2, y;x = z->r;y = z->i;if( (x == 0.0) && (y > 1.0) ) goto ovrf;x2 = x * x;a = 1.0 - x2 - (y * y);if( a == 0.0 ) goto ovrf;#if ANSICt = atan2( 2.0 * x, a )/2.0;#elset = atan2( a, 2.0 * x )/2.0;#endifw->r = redupi( t );t = y - 1.0;a = x2 + (t * t);if( a == 0.0 ) goto ovrf;t = y + 1.0;a = (x2 + (t * t))/a;w->i = log(a)/4.0;return;ovrf:mtherr( "catan", OVERFLOW );w->r = MAXNUM;w->i = MAXNUM;}/* csinh * * Complex hyperbolic sine * * * * SYNOPSIS: * * void csinh(); * cmplx z, w; * * csinh( &z, &w ); * * * DESCRIPTION: * * csinh z = (cexp(z) - cexp(-z))/2 * = sinh x * cos y + i cosh x * sin y . * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 3.1e-16 8.2e-17 * */voidcsinh (z, w) cmplx *z, *w;{ double x, y; x = z->r; y = z->i; w->r = sinh (x) * cos (y); w->i = cosh (x) * sin (y);}/* casinh * * Complex inverse hyperbolic sine * * * * SYNOPSIS: * * void casinh(); * cmplx z, w; * * casinh (&z, &w); * * * * DESCRIPTION: * * casinh z = -i casin iz . * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 1.8e-14 2.6e-15 * */voidcasinh (z, w) cmplx *z, *w;{ cmplx u; u.r = 0.0; u.i = 1.0; cmul( z, &u, &u ); casin( &u, w ); u.r = 0.0; u.i = -1.0; cmul( &u, w, w );}/* ccosh * * Complex hyperbolic cosine * * * * SYNOPSIS: * * void ccosh(); * cmplx z, w; * * ccosh (&z, &w); * * * * DESCRIPTION: * * ccosh(z) = cosh x cos y + i sinh x sin y . * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 2.9e-16 8.1e-17 * */voidccosh (z, w) cmplx *z, *w;{ double x, y; x = z->r; y = z->i; w->r = cosh (x) * cos (y); w->i = sinh (x) * sin (y);}/* cacosh * * Complex inverse hyperbolic cosine * * * * SYNOPSIS: * * void cacosh(); * cmplx z, w; * * cacosh (&z, &w); * * * * DESCRIPTION: * * acosh z = i acos z . * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 1.6e-14 2.1e-15 * */voidcacosh (z, w) cmplx *z, *w;{ cmplx u; cacos( z, w ); u.r = 0.0; u.i = 1.0; cmul( &u, w, w );}/* ctanh * * Complex hyperbolic tangent * * * * SYNOPSIS: * * void ctanh(); * cmplx z, w; * * ctanh (&z, &w); * * * * DESCRIPTION: * * tanh z = (sinh 2x + i sin 2y) / (cosh 2x + cos 2y) . * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 1.7e-14 2.4e-16 * *//* 5.253E-02,1.550E+00 1.643E+01,6.553E+00 1.729E-14 21355 */voidctanh (z, w) cmplx *z, *w;{ double x, y, d; x = z->r; y = z->i; d = cosh (2.0 * x) + cos (2.0 * y); w->r = sinh (2.0 * x) / d; w->i = sin (2.0 * y) / d; return;}/* catanh * * Complex inverse hyperbolic tangent * * * * SYNOPSIS: * * void catanh(); * cmplx z, w; * * catanh (&z, &w); * * * * DESCRIPTION: * * Inverse tanh, equal to -i catan (iz); * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 2.3e-16 6.2e-17 * */voidcatanh (z, w) cmplx *z, *w;{ cmplx u; u.r = 0.0; u.i = 1.0; cmul (z, &u, &u); /* i z */ catan (&u, w); u.r = 0.0; u.i = -1.0; cmul (&u, w, w); /* -i catan iz */ return;}/* cpow * * Complex power function * * * * SYNOPSIS: * * void cpow(); * cmplx a, z, w; * * cpow (&a, &z, &w); * * * * DESCRIPTION: * * Raises complex A to the complex Zth power. * Definition is per AMS55 # 4.2.8, * analytically equivalent to cpow(a,z) = cexp(z clog(a)). * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,+10 30000 9.4e-15 1.5e-15 * */voidcpow (a, z, w) cmplx *a, *z, *w;{ double x, y, r, theta, absa, arga; x = z->r; y = z->i; absa = cabs (a); if (absa == 0.0) { w->r = 0.0; w->i = 0.0; return; } arga = atan2 (a->i, a->r); r = pow (absa, x); theta = x * arga; if (y != 0.0) { r = r * exp (-y * arga); theta = theta + y * log (absa); } w->r = r * cos (theta); w->i = r * sin (theta); return;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -