📄 tan.c
字号:
/* tan.c * * Circular tangent * * * * SYNOPSIS: * * double x, y, tan(); * * y = tan( x ); * * * * DESCRIPTION: * * Returns the circular tangent of the radian argument x. * * Range reduction is modulo pi/4. A rational function * x + x**3 P(x**2)/Q(x**2) * is employed in the basic interval [0, pi/4]. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC +-1.07e9 44000 4.1e-17 1.0e-17 * IEEE +-1.07e9 30000 2.9e-16 8.1e-17 * * ERROR MESSAGES: * * message condition value returned * tan total loss x > 1.073741824e9 0.0 * *//* cot.c * * Circular cotangent * * * * SYNOPSIS: * * double x, y, cot(); * * y = cot( x ); * * * * DESCRIPTION: * * Returns the circular cotangent of the radian argument x. * * Range reduction is modulo pi/4. A rational function * x + x**3 P(x**2)/Q(x**2) * is employed in the basic interval [0, pi/4]. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE +-1.07e9 30000 2.9e-16 8.2e-17 * * * ERROR MESSAGES: * * message condition value returned * cot total loss x > 1.073741824e9 0.0 * cot singularity x = 0 INFINITY * *//*Cephes Math Library Release 2.8: June, 2000yright 1984, 1995, 2000 by Stephen L. Moshier*/#include "mconf.h"#ifdef UNKstatic double P[] = {-1.30936939181383777646E4, 1.15351664838587416140E6,-1.79565251976484877988E7};static double Q[] = {/* 1.00000000000000000000E0,*/ 1.36812963470692954678E4,-1.32089234440210967447E6, 2.50083801823357915839E7,-5.38695755929454629881E7};static double DP1 = 7.853981554508209228515625E-1;static double DP2 = 7.94662735614792836714E-9;static double DP3 = 3.06161699786838294307E-17;static double lossth = 1.073741824e9;#endif#ifdef DECstatic unsigned short P[] = {0143514,0113306,0111171,0174674,0045214,0147545,0027744,0167346,0146210,0177526,0114514,0105660};static unsigned short Q[] = {/*0040200,0000000,0000000,0000000,*/0043525,0142457,0072633,0025617,0145241,0036742,0140525,0162256,0046276,0146176,0013526,0143573,0146515,0077401,0162762,0150607};/* 7.853981629014015197753906250000E-1 */static unsigned short P1[] = {0040111,0007732,0120000,0000000,};/* 4.960467869796758577649598009884E-10 */static unsigned short P2[] = {0030410,0055060,0100000,0000000,};/* 2.860594363054915898381331279295E-18 */static unsigned short P3[] = {0021523,0011431,0105056,0001560,};#define DP1 *(double *)P1#define DP2 *(double *)P2#define DP3 *(double *)P3static double lossth = 1.073741824e9;#endif#ifdef IBMPCstatic unsigned short P[] = {0x3f38,0xd24f,0x92d8,0xc0c9,0x9ddd,0xa5fc,0x99ec,0x4131,0x9176,0xd329,0x1fea,0xc171};static unsigned short Q[] = {/*0x0000,0x0000,0x0000,0x3ff0,*/0x6572,0xeeb3,0xb8a5,0x40ca,0xbc96,0x582a,0x27bc,0xc134,0xd8ef,0xc2ea,0xd98f,0x4177,0x5a31,0x3cbe,0xafe0,0xc189};/* 7.85398125648498535156E-1, 3.77489470793079817668E-8, 2.69515142907905952645E-15,*/static unsigned short P1[] = {0x0000,0x4000,0x21fb,0x3fe9};static unsigned short P2[] = {0x0000,0x0000,0x442d,0x3e64};static unsigned short P3[] = {0x5170,0x98cc,0x4698,0x3ce8};#define DP1 *(double *)P1#define DP2 *(double *)P2#define DP3 *(double *)P3static double lossth = 1.073741824e9;#endif#ifdef MIEEEstatic unsigned short P[] = {0xc0c9,0x92d8,0xd24f,0x3f38,0x4131,0x99ec,0xa5fc,0x9ddd,0xc171,0x1fea,0xd329,0x9176};static unsigned short Q[] = {0x40ca,0xb8a5,0xeeb3,0x6572,0xc134,0x27bc,0x582a,0xbc96,0x4177,0xd98f,0xc2ea,0xd8ef,0xc189,0xafe0,0x3cbe,0x5a31};static unsigned short P1[] = {0x3fe9,0x21fb,0x4000,0x0000};static unsigned short P2[] = {0x3e64,0x442d,0x0000,0x0000};static unsigned short P3[] = {0x3ce8,0x4698,0x98cc,0x5170,};#define DP1 *(double *)P1#define DP2 *(double *)P2#define DP3 *(double *)P3static double lossth = 1.073741824e9;#endif#ifdef ANSIPROTextern double polevl ( double, void *, int );extern double p1evl ( double, void *, int );extern double floor ( double );extern double ldexp ( double, int );extern int isnan ( double );extern int isfinite ( double );static double tancot(double, int);#elsedouble polevl(), p1evl(), floor(), ldexp();static double tancot();int isnan(), isfinite();#endifextern double PIO4;extern double INFINITY;extern double NAN;double tan(x)double x;{#ifdef MINUSZEROif( x == 0.0 ) return(x);#endif#ifdef NANSif( isnan(x) ) return(x);if( !isfinite(x) ) { mtherr( "tan", DOMAIN ); return(NAN); }#endifreturn( tancot(x,0) );}double cot(x)double x;{if( x == 0.0 ) { mtherr( "cot", SING ); return( INFINITY ); }return( tancot(x,1) );}static double tancot( xx, cotflg )double xx;int cotflg;{double x, y, z, zz;int j, sign;/* make argument positive but save the sign */if( xx < 0 ) { x = -xx; sign = -1; }else { x = xx; sign = 1; }if( x > lossth ) { if( cotflg ) mtherr( "cot", TLOSS ); else mtherr( "tan", TLOSS ); return(0.0); }/* compute x mod PIO4 */y = floor( x/PIO4 );/* strip high bits of integer part */z = ldexp( y, -3 );z = floor(z); /* integer part of y/8 */z = y - ldexp( z, 3 ); /* y - 16 * (y/16) *//* integer and fractional part modulo one octant */j = z;/* map zeros and singularities to origin */if( j & 1 ) { j += 1; y += 1.0; }z = ((x - y * DP1) - y * DP2) - y * DP3;zz = z * z;if( zz > 1.0e-14 ) y = z + z * (zz * polevl( zz, P, 2 )/p1evl(zz, Q, 4));else y = z; if( j & 2 ) { if( cotflg ) y = -y; else y = -1.0/y; }else { if( cotflg ) y = 1.0/y; }if( sign < 0 ) y = -y;return( y );}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -