📄 floor.c
字号:
/* ceil() * floor() * frexp() * ldexp() * signbit() * isnan() * isfinite() * * Floating point numeric utilities * * * * SYNOPSIS: * * double ceil(), floor(), frexp(), ldexp(); * int signbit(), isnan(), isfinite(); * double x, y; * int expnt, n; * * y = floor(x); * y = ceil(x); * y = frexp( x, &expnt ); * y = ldexp( x, n ); * n = signbit(x); * n = isnan(x); * n = isfinite(x); * * * * DESCRIPTION: * * All four routines return a double precision floating point * result. * * floor() returns the largest integer less than or equal to x. * It truncates toward minus infinity. * * ceil() returns the smallest integer greater than or equal * to x. It truncates toward plus infinity. * * frexp() extracts the exponent from x. It returns an integer * power of two to expnt and the significand between 0.5 and 1 * to y. Thus x = y * 2**expn. * * ldexp() multiplies x by 2**n. * * signbit(x) returns 1 if the sign bit of x is 1, else 0. * * These functions are part of the standard C run time library * for many but not all C compilers. The ones supplied are * written in C for either DEC or IEEE arithmetic. They should * be used only if your compiler library does not already have * them. * * The IEEE versions assume that denormal numbers are implemented * in the arithmetic. Some modifications will be required if * the arithmetic has abrupt rather than gradual underflow. *//*Cephes Math Library Release 2.8: June, 2000Copyright 1984, 1995, 2000 by Stephen L. Moshier*/#include "mconf.h"#ifdef UNK/* ceil(), floor(), frexp(), ldexp() may need to be rewritten. */#undef UNK#if BIGENDIAN#define MIEEE 1#else#define IBMPC 1#endif#endif#ifdef DEC#define EXPMSK 0x807f#define MEXP 255#define NBITS 56#endif#ifdef IBMPC#define EXPMSK 0x800f#define MEXP 0x7ff#define NBITS 53#endif#ifdef MIEEE#define EXPMSK 0x800f#define MEXP 0x7ff#define NBITS 53#endifextern double MAXNUM, NEGZERO;#ifdef ANSIPROTdouble floor ( double );int isnan ( double );int isfinite ( double );double ldexp ( double, int );#elsedouble floor();int isnan(), isfinite();double ldexp();#endifdouble ceil(x)double x;{double y;#ifdef UNKmtherr( "ceil", DOMAIN );return(0.0);#endif#ifdef NANSif( isnan(x) ) return( x );#endif#ifdef INFINITIESif(!isfinite(x)) return(x);#endify = floor(x);if( y < x ) y += 1.0;#ifdef MINUSZEROif( y == 0.0 && x < 0.0 ) return( NEGZERO );#endifreturn(y);}/* Bit clearing masks: */static unsigned short bmask[] = {0xffff,0xfffe,0xfffc,0xfff8,0xfff0,0xffe0,0xffc0,0xff80,0xff00,0xfe00,0xfc00,0xf800,0xf000,0xe000,0xc000,0x8000,0x0000,};double floor(x)double x;{union { double y; unsigned short sh[4]; } u;unsigned short *p;int e;#ifdef UNKmtherr( "floor", DOMAIN );return(0.0);#endif#ifdef NANSif( isnan(x) ) return( x );#endif#ifdef INFINITIESif(!isfinite(x)) return(x);#endif#ifdef MINUSZEROif(x == 0.0L) return(x);#endifu.y = x;/* find the exponent (power of 2) */#ifdef DECp = (unsigned short *)&u.sh[0];e = (( *p >> 7) & 0377) - 0201;p += 3;#endif#ifdef IBMPCp = (unsigned short *)&u.sh[3];e = (( *p >> 4) & 0x7ff) - 0x3ff;p -= 3;#endif#ifdef MIEEEp = (unsigned short *)&u.sh[0];e = (( *p >> 4) & 0x7ff) - 0x3ff;p += 3;#endifif( e < 0 ) { if( u.y < 0.0 ) return( -1.0 ); else return( 0.0 ); }e = (NBITS -1) - e;/* clean out 16 bits at a time */while( e >= 16 ) {#ifdef IBMPC *p++ = 0;#endif#ifdef DEC *p-- = 0;#endif#ifdef MIEEE *p-- = 0;#endif e -= 16; }/* clear the remaining bits */if( e > 0 ) *p &= bmask[e];if( (x < 0) && (u.y != x) ) u.y -= 1.0;return(u.y);}double frexp( x, pw2 )double x;int *pw2;{union { double y; unsigned short sh[4]; } u;int i;#ifdef DENORMALint k;#endifshort *q;u.y = x;#ifdef UNKmtherr( "frexp", DOMAIN );return(0.0);#endif#ifdef IBMPCq = (short *)&u.sh[3];#endif#ifdef DECq = (short *)&u.sh[0];#endif#ifdef MIEEEq = (short *)&u.sh[0];#endif/* find the exponent (power of 2) */#ifdef DECi = ( *q >> 7) & 0377;if( i == 0 ) { *pw2 = 0; return(0.0); }i -= 0200;*pw2 = i;*q &= 0x807f; /* strip all exponent bits */*q |= 040000; /* mantissa between 0.5 and 1 */return(u.y);#endif#ifdef IBMPCi = ( *q >> 4) & 0x7ff;if( i != 0 ) goto ieeedon;#endif#ifdef MIEEEi = *q >> 4;i &= 0x7ff;if( i != 0 ) goto ieeedon;#ifdef DENORMAL#else*pw2 = 0;return(0.0);#endif#endif#ifndef DEC/* Number is denormal or zero */#ifdef DENORMALif( u.y == 0.0 ) { *pw2 = 0; return( 0.0 ); }/* Handle denormal number. */do { u.y *= 2.0; i -= 1; k = ( *q >> 4) & 0x7ff; }while( k == 0 );i = i + k;#endif /* DENORMAL */ieeedon:i -= 0x3fe;*pw2 = i;*q &= 0x800f;*q |= 0x3fe0;return( u.y );#endif}double ldexp( x, pw2 )double x;int pw2;{union { double y; unsigned short sh[4]; } u;short *q;int e;#ifdef UNKmtherr( "ldexp", DOMAIN );return(0.0);#endifu.y = x;#ifdef DECq = (short *)&u.sh[0];e = ( *q >> 7) & 0377;if( e == 0 ) return(0.0);#else#ifdef IBMPCq = (short *)&u.sh[3];#endif#ifdef MIEEEq = (short *)&u.sh[0];#endifwhile( (e = (*q & 0x7ff0) >> 4) == 0 ) { if( u.y == 0.0 ) { return( 0.0 ); }/* Input is denormal. */ if( pw2 > 0 ) { u.y *= 2.0; pw2 -= 1; } if( pw2 < 0 ) { if( pw2 < -53 ) return(0.0); u.y /= 2.0; pw2 += 1; } if( pw2 == 0 ) return(u.y); }#endif /* not DEC */e += pw2;/* Handle overflow */#ifdef DECif( e > MEXP ) return( MAXNUM );#elseif( e >= MEXP ) return( 2.0*MAXNUM );#endif/* Handle denormalized results */if( e < 1 ) {#ifdef DENORMAL if( e < -53 ) return(0.0); *q &= 0x800f; *q |= 0x10; /* For denormals, significant bits may be lost even when dividing by 2. Construct 2^-(1-e) so the result is obtained with only one multiplication. */ u.y *= ldexp(1.0, e-1); return(u.y);#else return(0.0);#endif }else {#ifdef DEC *q &= 0x807f; /* strip all exponent bits */ *q |= (e & 0xff) << 7;#else *q &= 0x800f; *q |= (e & 0x7ff) << 4;#endif return(u.y); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -