⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mbprediction.c

📁 这是一个压缩解压包,用C语言进行编程的,里面有详细的源代码.
💻 C
📖 第 1 页 / 共 2 页
字号:
	int Z1, Z2;	/* store current coeffs to pred_values[] for future prediction */	pCurrent[0] = qcoeff[0] * iDcScaler;	pCurrent[0] = CLIP(pCurrent[0], -2048, 2047);	for (i = 1; i < 8; i++) {		pCurrent[i] = qcoeff[i];		pCurrent[i + 7] = qcoeff[i * 8];	}	/* dc prediction */	qcoeff[0] = qcoeff[0] - predictors[0];	/* calc cost before ac prediction */	Z2 = CodeCoeffIntra_CalcBits(qcoeff, scan_tables[0]);	/* apply ac prediction & calc cost*/	if (direction == 1) {		for (i = 1; i < 8; i++) {			tmp[i] = qcoeff[i];			qcoeff[i] -= predictors[i];			predictors[i] = qcoeff[i];		}	}else{						/* acpred_direction == 2 */		for (i = 1; i < 8; i++) {			tmp[i] = qcoeff[i*8];			qcoeff[i*8] -= predictors[i];			predictors[i] = qcoeff[i*8];		}	}	Z1 = CodeCoeffIntra_CalcBits(qcoeff, scan_tables[direction]);	/* undo prediction */	if (direction == 1) {		for (i = 1; i < 8; i++)			qcoeff[i] = tmp[i];	}else{						/* acpred_direction == 2 */		for (i = 1; i < 8; i++)			qcoeff[i*8] = tmp[i];	}	return Z2-Z1;}/* apply predictors[] to qcoeff */static voidapply_acdc(MACROBLOCK * pMB,		   uint32_t block,		   int16_t qcoeff[64],		   int16_t predictors[8]){	unsigned int i;	if (pMB->acpred_directions[block] == 1) {		for (i = 1; i < 8; i++)			qcoeff[i] = predictors[i];	} else {		for (i = 1; i < 8; i++)			qcoeff[i * 8] = predictors[i];	}}voidMBPrediction(FRAMEINFO * frame,			 uint32_t x,			 uint32_t y,			 uint32_t mb_width,			 int16_t qcoeff[6 * 64]){	int32_t j;	int32_t iDcScaler, iQuant;	int S = 0;	int16_t predictors[6][8];	MACROBLOCK *pMB = &frame->mbs[x + y * mb_width];    iQuant = pMB->quant;	if ((pMB->mode == MODE_INTRA) || (pMB->mode == MODE_INTRA_Q)) {		for (j = 0; j < 6; j++) {			iDcScaler = get_dc_scaler(iQuant, j<4);			predict_acdc(frame->mbs, x, y, mb_width, j, &qcoeff[j * 64],						 iQuant, iDcScaler, predictors[j], 0);			if ((frame->vop_flags & XVID_VOP_HQACPRED))				S += calc_acdc_bits(pMB, j, &qcoeff[j * 64], iDcScaler, predictors[j]);			else				S += calc_acdc_coeff(pMB, j, &qcoeff[j * 64], iDcScaler, predictors[j]);		}		if (S<=0) {				/* dont predict */			for (j = 0; j < 6; j++)				pMB->acpred_directions[j] = 0;		}else{			for (j = 0; j < 6; j++)				apply_acdc(pMB, j, &qcoeff[j * 64], predictors[j]);		}		pMB->cbp = calc_cbp(qcoeff);	}}static const VECTOR zeroMV = { 0, 0 };VECTORget_pmv2(const MACROBLOCK * const mbs,		const int mb_width,		const int bound,		const int x,		const int y,		const int block){	int lx, ly, lz;		/* left */	int tx, ty, tz;		/* top */	int rx, ry, rz;		/* top-right */	int lpos, tpos, rpos;	int num_cand = 0, last_cand = 1;	VECTOR pmv[4];	/* left neighbour, top neighbour, top-right neighbour */	switch (block) {	case 0:		lx = x - 1;	ly = y;		lz = 1;		tx = x;		ty = y - 1;	tz = 2;		rx = x + 1;	ry = y - 1;	rz = 2;		break;	case 1:		lx = x;		ly = y;		lz = 0;		tx = x;		ty = y - 1;	tz = 3;		rx = x + 1;	ry = y - 1;	rz = 2;		break;	case 2:		lx = x - 1;	ly = y;		lz = 3;		tx = x;		ty = y;		tz = 0;		rx = x;		ry = y;		rz = 1;		break;	default:		lx = x;		ly = y;		lz = 2;		tx = x;		ty = y;		tz = 0;		rx = x;		ry = y;		rz = 1;	}	lpos = lx + ly * mb_width;	rpos = rx + ry * mb_width;	tpos = tx + ty * mb_width;	if (lpos >= bound && lx >= 0) {		num_cand++;		pmv[1] = mbs[lpos].mvs[lz];	} else pmv[1] = zeroMV;	if (tpos >= bound) {		num_cand++;		last_cand = 2;		pmv[2] = mbs[tpos].mvs[tz];	} else pmv[2] = zeroMV;	if (rpos >= bound && rx < mb_width) {		num_cand++;		last_cand = 3;		pmv[3] = mbs[rpos].mvs[rz];	} else pmv[3] = zeroMV;	/* If there're more than one candidate, we return the median vector */	if (num_cand > 1) {		/* set median */		pmv[0].x =			MIN(MAX(pmv[1].x, pmv[2].x),				MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x)));		pmv[0].y =			MIN(MAX(pmv[1].y, pmv[2].y),				MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y)));		return pmv[0];	}	return pmv[last_cand];	/* no point calculating median mv */}VECTOR get_pmv2_interlaced(const MACROBLOCK * const mbs,   const int mb_width,   const int bound,   const int x,   const int y,   const int block){  int lx, ly, lz;   /* left */  int tx, ty, tz;   /* top */  int rx, ry, rz;   /* top-right */  int lpos, tpos, rpos;  int num_cand = 0, last_cand = 1;  VECTOR pmv[4];  /* left neighbour, top neighbour, top-right neighbour */  lx=x-1; ly=y;   lz=1;  tx=x;   ty=y-1; tz=2;  rx=x+1; ry=y-1; rz=2;  lpos=lx+ly*mb_width;  rpos=rx+ry*mb_width;  tpos=tx+ty*mb_width;  if(lx>=0 && lpos>=bound)   {    num_cand++;    if(mbs[lpos].field_pred)     pmv[1] = mbs[lpos].mvs_avg;    else      pmv[1] = mbs[lpos].mvs[lz];  }  else   {    pmv[1] = zeroMV;  }    if(tpos>=bound)   {    num_cand++;    last_cand=2;    if(mbs[tpos].field_pred)     pmv[2] = mbs[tpos].mvs_avg;    else     pmv[2] = mbs[tpos].mvs[tz];  }   else  {     pmv[2] = zeroMV;  }          if(rx<mb_width && rpos>=bound)   {    num_cand++;    last_cand = 3;    if(mbs[rpos].field_pred)     pmv[3] = mbs[rpos].mvs_avg;    else     pmv[3] = mbs[rpos].mvs[rz];  }   else  {     pmv[3] = zeroMV;  }    /* If there're more than one candidate, we return the median vector */  if(num_cand>1)   {    /* set median */    pmv[0].x = MIN(MAX(pmv[1].x, pmv[2].x),               MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x)));    pmv[0].y = MIN(MAX(pmv[1].y, pmv[2].y),               MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y)));              return pmv[0];  }  return pmv[last_cand];  /* no point calculating median mv */}VECTORget_qpmv2(const MACROBLOCK * const mbs,		const int mb_width,		const int bound,		const int x,		const int y,		const int block){	int lx, ly, lz;		/* left */	int tx, ty, tz;		/* top */	int rx, ry, rz;		/* top-right */	int lpos, tpos, rpos;	int num_cand = 0, last_cand = 1;	VECTOR pmv[4];	/* left neighbour, top neighbour, top-right neighbour */	switch (block) {	case 0:		lx = x - 1;	ly = y;		lz = 1;		tx = x;		ty = y - 1;	tz = 2;		rx = x + 1;	ry = y - 1;	rz = 2;		break;	case 1:		lx = x;		ly = y;		lz = 0;		tx = x;		ty = y - 1;	tz = 3;		rx = x + 1;	ry = y - 1;	rz = 2;		break;	case 2:		lx = x - 1;	ly = y;		lz = 3;		tx = x;		ty = y;		tz = 0;		rx = x;		ry = y;		rz = 1;		break;	default:		lx = x;		ly = y;		lz = 2;		tx = x;		ty = y;		tz = 0;		rx = x;		ry = y;		rz = 1;	}	lpos = lx + ly * mb_width;	rpos = rx + ry * mb_width;	tpos = tx + ty * mb_width;	if (lpos >= bound && lx >= 0) {		num_cand++;		pmv[1] = mbs[lpos].qmvs[lz];	} else pmv[1] = zeroMV;	if (tpos >= bound) {		num_cand++;		last_cand = 2;		pmv[2] = mbs[tpos].qmvs[tz];	} else pmv[2] = zeroMV;	if (rpos >= bound && rx < mb_width) {		num_cand++;		last_cand = 3;		pmv[3] = mbs[rpos].qmvs[rz];	} else pmv[3] = zeroMV;	/* If there're more than one candidate, we return the median vector */	if (num_cand > 1) {		/* set median */		pmv[0].x =			MIN(MAX(pmv[1].x, pmv[2].x),				MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x)));		pmv[0].y =			MIN(MAX(pmv[1].y, pmv[2].y),				MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y)));		return pmv[0];	}	return pmv[last_cand];	/* no point calculating median mv */}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -