⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mbprediction.c

📁 这是一个压缩解压包,用C语言进行编程的,里面有详细的源代码.
💻 C
📖 第 1 页 / 共 2 页
字号:
/***************************************************************************** * *  XVID MPEG-4 VIDEO CODEC *  - Prediction module - * *  Copyright (C) 2001-2003 Michael Militzer <isibaar@xvid.org> *                2001-2003 Peter Ross <pross@xvid.org> * *  This program is free software ; you can redistribute it and/or modify *  it under the terms of the GNU General Public License as published by *  the Free Software Foundation ; either version 2 of the License, or *  (at your option) any later version. * *  This program is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY ; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *  GNU General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program ; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA * * $Id: mbprediction.c,v 1.18 2005/11/22 10:23:01 suxen_drol Exp $ * ****************************************************************************/#include <stdlib.h>#include "../global.h"#include "../encoder.h"#include "mbprediction.h"#include "../utils/mbfunctions.h"#include "../bitstream/cbp.h"#include "../bitstream/mbcoding.h"#include "../bitstream/zigzag.h"static int __inlinerescale(int predict_quant,		int current_quant,		int coeff){	return (coeff != 0) ? DIV_DIV((coeff) * (predict_quant),								  (current_quant)) : 0;}static const int16_t default_acdc_values[15] = {	1024,	0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0};/*	get dc/ac prediction direction for a single block and place	predictor values into MB->pred_values[j][..]*/voidpredict_acdc(MACROBLOCK * pMBs,			 uint32_t x,			 uint32_t y,			 uint32_t mb_width,			 uint32_t block,			 int16_t qcoeff[64],			 uint32_t current_quant,			 int32_t iDcScaler,			 int16_t predictors[8],			 const int bound){	const int mbpos = (y * mb_width) + x;	int16_t *left, *top, *diag, *current;	int32_t left_quant = current_quant;	int32_t top_quant = current_quant;	const int16_t *pLeft = default_acdc_values;	const int16_t *pTop = default_acdc_values;	const int16_t *pDiag = default_acdc_values;	uint32_t index = x + y * mb_width;	/* current macroblock */	int *acpred_direction = &pMBs[index].acpred_directions[block];	uint32_t i;	left = top = diag = current = NULL;	/* grab left,top and diag macroblocks */	/* left macroblock */	if (x && mbpos >= bound + 1  &&		(pMBs[index - 1].mode == MODE_INTRA ||		 pMBs[index - 1].mode == MODE_INTRA_Q)) {		left = (int16_t*)pMBs[index - 1].pred_values[0];		left_quant = pMBs[index - 1].quant;	}	/* top macroblock */	if (mbpos >= bound + (int)mb_width &&		(pMBs[index - mb_width].mode == MODE_INTRA ||		 pMBs[index - mb_width].mode == MODE_INTRA_Q)) {		top = (int16_t*)pMBs[index - mb_width].pred_values[0];		top_quant = pMBs[index - mb_width].quant;	}	/* diag macroblock */	if (x && mbpos >= bound + (int)mb_width + 1 &&		(pMBs[index - 1 - mb_width].mode == MODE_INTRA ||		 pMBs[index - 1 - mb_width].mode == MODE_INTRA_Q)) {		diag = (int16_t*)pMBs[index - 1 - mb_width].pred_values[0];	}	current = (int16_t*)pMBs[index].pred_values[0];	/* now grab pLeft, pTop, pDiag _blocks_ */	switch (block) {	case 0:		if (left)			pLeft = left + MBPRED_SIZE;		if (top)			pTop = top + (MBPRED_SIZE << 1);		if (diag)			pDiag = diag + 3 * MBPRED_SIZE;		break;	case 1:		pLeft = current;		left_quant = current_quant;		if (top) {			pTop = top + 3 * MBPRED_SIZE;			pDiag = top + (MBPRED_SIZE << 1);		}		break;	case 2:		if (left) {			pLeft = left + 3 * MBPRED_SIZE;			pDiag = left + MBPRED_SIZE;		}		pTop = current;		top_quant = current_quant;		break;	case 3:		pLeft = current + (MBPRED_SIZE << 1);		left_quant = current_quant;		pTop = current + MBPRED_SIZE;		top_quant = current_quant;		pDiag = current;		break;	case 4:		if (left)			pLeft = left + (MBPRED_SIZE << 2);		if (top)			pTop = top + (MBPRED_SIZE << 2);		if (diag)			pDiag = diag + (MBPRED_SIZE << 2);		break;	case 5:		if (left)			pLeft = left + 5 * MBPRED_SIZE;		if (top)			pTop = top + 5 * MBPRED_SIZE;		if (diag)			pDiag = diag + 5 * MBPRED_SIZE;		break;	}	/* determine ac prediction direction & ac/dc predictor place rescaled ac/dc	 * predictions into predictors[] for later use */	if (abs(pLeft[0] - pDiag[0]) < abs(pDiag[0] - pTop[0])) {		*acpred_direction = 1;	/* vertical */		predictors[0] = DIV_DIV(pTop[0], iDcScaler);		for (i = 1; i < 8; i++) {			predictors[i] = rescale(top_quant, current_quant, pTop[i]);		}	} else {		*acpred_direction = 2;	/* horizontal */		predictors[0] = DIV_DIV(pLeft[0], iDcScaler);		for (i = 1; i < 8; i++) {			predictors[i] = rescale(left_quant, current_quant, pLeft[i + 7]);		}	}}/* decoder: add predictors to dct_codes[] and   store current coeffs to pred_values[] for future prediction*//* Up to this version, no DC clipping was performed, so we try to be backward * compatible to avoid artifacts */#define BS_VERSION_BUGGY_DC_CLIPPING 34voidadd_acdc(MACROBLOCK * pMB,		 uint32_t block,		 int16_t dct_codes[64],		 uint32_t iDcScaler,		 int16_t predictors[8],		 const int bsversion){	uint8_t acpred_direction = pMB->acpred_directions[block];	int16_t *pCurrent = (int16_t*)pMB->pred_values[block];	uint32_t i;	DPRINTF(XVID_DEBUG_COEFF,"predictor[0] %i\n", predictors[0]);	dct_codes[0] += predictors[0];	/* dc prediction */	pCurrent[0] = dct_codes[0]*iDcScaler;	if (!bsversion || bsversion > BS_VERSION_BUGGY_DC_CLIPPING) {		pCurrent[0] = CLIP(pCurrent[0], -2048, 2047);	}	if (acpred_direction == 1) {		for (i = 1; i < 8; i++) {			int level = dct_codes[i] + predictors[i];			DPRINTF(XVID_DEBUG_COEFF,"predictor[%i] %i\n",i, predictors[i]);			dct_codes[i] = level;			pCurrent[i] = level;			pCurrent[i + 7] = dct_codes[i * 8];		}	} else if (acpred_direction == 2) {		for (i = 1; i < 8; i++) {			int level = dct_codes[i * 8] + predictors[i];			DPRINTF(XVID_DEBUG_COEFF,"predictor[%i] %i\n",i*8, predictors[i]);			dct_codes[i * 8] = level;			pCurrent[i + 7] = level;			pCurrent[i] = dct_codes[i];		}	} else {		for (i = 1; i < 8; i++) {			pCurrent[i] = dct_codes[i];			pCurrent[i + 7] = dct_codes[i * 8];		}	}}/***************************************************************************** ****************************************************************************//* encoder: subtract predictors from qcoeff[] and calculate S1/S2returns sum of coeefficients *saved* if prediction is enabledS1 = sum of all (qcoeff - prediction)S2 = sum of all qcoeff*/static intcalc_acdc_coeff(MACROBLOCK * pMB,		  uint32_t block,		  int16_t qcoeff[64],		  uint32_t iDcScaler,		  int16_t predictors[8]){	int16_t *pCurrent = (int16_t*)pMB->pred_values[block];	uint32_t i;	int S1 = 0, S2 = 0;	/* store current coeffs to pred_values[] for future prediction */	pCurrent[0] = qcoeff[0] * iDcScaler;	pCurrent[0] = CLIP(pCurrent[0], -2048, 2047);	for (i = 1; i < 8; i++) {		pCurrent[i] = qcoeff[i];		pCurrent[i + 7] = qcoeff[i * 8];	}	/* subtract predictors and store back in predictors[] */	qcoeff[0] = qcoeff[0] - predictors[0];	if (pMB->acpred_directions[block] == 1) {		for (i = 1; i < 8; i++) {			int16_t level;			level = qcoeff[i];			S2 += abs(level);			level -= predictors[i];			S1 += abs(level);			predictors[i] = level;		}	} else						/* acpred_direction == 2 */	{		for (i = 1; i < 8; i++) {			int16_t level;			level = qcoeff[i * 8];			S2 += abs(level);			level -= predictors[i];			S1 += abs(level);			predictors[i] = level;		}	}	return S2 - S1;}/* returns the bits *saved* if prediction is enabled */static intcalc_acdc_bits(MACROBLOCK * pMB,		  uint32_t block,		  int16_t qcoeff[64],		  uint32_t iDcScaler,		  int16_t predictors[8]){	const int direction = pMB->acpred_directions[block];	int16_t *pCurrent = (int16_t*)pMB->pred_values[block];	int16_t tmp[8];	unsigned int i;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -