⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 reedsolomon.java

📁 一款用Java实现QR解码的源代码。
💻 JAVA
字号:

/* 
 * 偙偺僋儔僗僼傽僀儖乽ReedSolomon.java乿偼丄Henry Minsky巵偑
 * 嶌惉偟偨僾儘僌儔儉乽RSCODE乿傪偺堦晹傪Java岦偗偵夵曄偟偨傕偺偱偡丅
 * 娭楢忣曬丗 https://sourceforge.net/projects/rscode/
 */

package jp.sourceforge.qrcode.codec.ecc;



public class ReedSolomon {
	//G(x)=兛^8+兛^4+兛^3+兛^2+1
	int[] y;

	int[] gexp = new int[512];
	int[] glog = new int[256];
	final int NPAR = 4;
	final int MAXDEG = NPAR*2;
	int[] synBytes = new int[MAXDEG];
	
	/* The Error Locator Polynomial, also known as Lambda or Sigma. Lambda[0] == 1 */
	 int[] Lambda = new int[MAXDEG];

	/* The Error Evaluator Polynomial */
	 int[] Omega = new int[MAXDEG];

	/* local ANSI declarations */

	/* error locations found using Chien's search*/
	 int[] ErrorLocs = new int[256];
	 int NErrors;

	/* erasure flags */
	 int[] ErasureLocs = new int[256];
	 int NErasures = 0;
	
	
	void initializeGaloisTables() {
	  int i, z;
	  int pinit,p1,p2,p3,p4,p5,p6,p7,p8;

	  pinit = p2 = p3 = p4 = p5 = p6 = p7 = p8 = 0;
	  p1 = 1;
		
	  gexp[0] = 1;
	  gexp[255] = gexp[0];
	  glog[0] = 0;			/* shouldn't log[0] be an error? */
		
	  for (i = 1; i < 256; i++) {
	    pinit = p8;
	    p8 = p7;
	    p7 = p6;
	    p6 = p5;
	    p5 = p4 ^ pinit;
	    p4 = p3 ^ pinit;
	    p3 = p2 ^ pinit;
	    p2 = p1;
	    p1 = pinit;
	    gexp[i] = p1 + p2*2 + p3*4 + p4*8 + p5*16 + p6*32 + p7*64 + p8*128;
	    gexp[i+255] = gexp[i];
	  }
		
	  for (i = 1; i < 256; i++) {
	    for (z = 0; z < 256; z++) {
	      if (gexp[z] == i) {
				glog[i] = z;
				break;
	      }
	    }
	  }
	}
	
	/* multiplication using logarithms */
	int gmult(int a, int b)
	{
	  int i,j;
	  if (a==0 || b == 0) return (0);
	  i = glog[a];
	  j = glog[b];
	  return (gexp[i+j]);
	}
			

	int ginv (int elt) 
	{ 
	  return (gexp[255-glog[elt]]);
	}

	
	public ReedSolomon(int[] source) {
		initializeGaloisTables();
		y = source;
	}
	
	void decode_data(int[] data)
	{
	  int i, j, sum;
	  for (j = 0; j < 8;  j++) {
	    sum	= 0;
	    for (i = 0; i < data.length; i++) {
	      sum = data[i] ^ gmult(gexp[j+1], sum);
	    }
	    synBytes[j]  = sum;
	  }
	}
	
	public void correct() {
//		return;
		decode_data(y);
		boolean hasError = false;
		for (int i = 0; i < synBytes.length; i++) {
			//System.out.println("SyndromeS"+String.valueOf(i) + " = " + synBytes[i]);
			if (synBytes[i] != 0)
				hasError = true;
		}
		if (hasError)
			correct_errors_erasures (y, y.length, 0, new int[1]);
	}
	
	public int getNumCorrectedErrors() {
		return NErrors;
	}


	/* From  Cain, Clark, "Error-Correction Coding For Digital Communications", pp. 216. */
	void
	Modified_Berlekamp_Massey ()
	{	
	  int n, L, L2, k, d, i;
	  int[] psi = new int[MAXDEG];
	  int[] psi2 = new int[MAXDEG];
		int[] D = new int[MAXDEG];
	  int[] gamma = new int[MAXDEG];
		
	  /* initialize Gamma, the erasure locator polynomial */
	  init_gamma(gamma);

	  /* initialize to z */
	  copy_poly(D, gamma);
	  mul_z_poly(D);
		
	  copy_poly(psi, gamma);	
	  k = -1; L = NErasures;
		
	  for (n = NErasures; n < 8; n++) {
		
	    d = compute_discrepancy(psi, synBytes, L, n);
			
	    if (d != 0) {
			
	      /* psi2 = psi - d*D */
	      for (i = 0; i < MAXDEG; i++) psi2[i] = psi[i] ^ gmult(d, D[i]);
			
			
	      if (L < (n-k)) {
		L2 = n-k;
		k = n-L;
		/* D = scale_poly(ginv(d), psi); */
		for (i = 0; i < MAXDEG; i++) D[i] = gmult(psi[i], ginv(d));
		L = L2;
	      }
				
	      /* psi = psi2 */
	      for (i = 0; i < MAXDEG; i++) psi[i] = psi2[i];
	    }
			
	    mul_z_poly(D);
	  }
		
	  for(i = 0; i < MAXDEG; i++) Lambda[i] = psi[i];
	  compute_modified_omega();

		
	}

	/* given Psi (called Lambda in Modified_Berlekamp_Massey) and synBytes,
	   compute the combined erasure/error evaluator polynomial as 
	   Psi*S mod z^4
	  */
	void
	compute_modified_omega ()
	{
	  int i;
	  int[] product = new int[MAXDEG*2];
		
	  mult_polys(product, Lambda, synBytes);	
	  zero_poly(Omega);
	  for(i = 0; i < NPAR; i++) Omega[i] = product[i];

	}

	/* polynomial multiplication */
	void
	mult_polys (int[] dst, int[] p1, int[] p2)
	{
	  int i, j;
	  int[] tmp1 = new int[MAXDEG*2];
		
	  for (i=0; i < (MAXDEG*2); i++) dst[i] = 0;
		
	  for (i = 0; i < MAXDEG; i++) {
	    for(j=MAXDEG; j<(MAXDEG*2); j++) tmp1[j]=0;
			
	    /* scale tmp1 by p1[i] */
	    for(j=0; j<MAXDEG; j++) tmp1[j]=gmult(p2[j], p1[i]);
	    /* and mult (shift) tmp1 right by i */
	    for (j = (MAXDEG*2)-1; j >= i; j--) tmp1[j] = tmp1[j-i];
	    for (j = 0; j < i; j++) tmp1[j] = 0;
			
	    /* add into partial product */
	    for(j=0; j < (MAXDEG*2); j++) dst[j] ^= tmp1[j];
	  }
	}


		
	/* gamma = product (1-z*a^Ij) for erasure locs Ij */
	void
	init_gamma (int[] gamma)
	{
	  int e;
	  int[] tmp = new int[MAXDEG];
		
	  zero_poly(gamma);
	  zero_poly(tmp);
	  gamma[0] = 1;
		
	  for (e = 0; e < NErasures; e++) {
	    copy_poly(tmp, gamma);
	    scale_poly(gexp[ErasureLocs[e]], tmp);
	    mul_z_poly(tmp);
	    add_polys(gamma, tmp);
	  }
	}
		
		
		
	void 
	compute_next_omega (int d, int[] A, int[] dst, int[] src)
	{
	  int i;
	  for ( i = 0; i < MAXDEG;  i++) {
	    dst[i] = src[i] ^ gmult(d, A[i]);
	  }
	}
		


	int
	compute_discrepancy (int[] lambda, int[] S, int L, int n)
	{
	  int i, sum=0;
		
	  for (i = 0; i <= L; i++) 
	    sum ^= gmult(lambda[i], S[n-i]);
	  return (sum);
	}

	/********** polynomial arithmetic *******************/

	void add_polys (int[] dst, int[] src) 
	{
	  int i;
	  for (i = 0; i < MAXDEG; i++) dst[i] ^= src[i];
	}

	void copy_poly (int[] dst, int[] src) 
	{
	  int i;
	  for (i = 0; i < MAXDEG; i++) dst[i] = src[i];
	}

	void scale_poly (int k, int[] poly) 
	{	
	  int i;
	  for (i = 0; i < MAXDEG; i++) poly[i] = gmult(k, poly[i]);
	}


	void zero_poly (int[] poly) 
	{
	  int i;
	  for (i = 0; i < MAXDEG; i++) poly[i] = 0;
	}


	/* multiply by z, i.e., shift right by 1 */
	void mul_z_poly (int[] src)
	{
	  int i;
	  for (i = MAXDEG-1; i > 0; i--) src[i] = src[i-1];
	  src[0] = 0;
	}


	/* Finds all the roots of an error-locator polynomial with coefficients
	 * Lambda[j] by evaluating Lambda at successive values of alpha. 
	 * 
	 * This can be tested with the decoder's equations case.
	 */


	void Find_Roots ()
	{
	  int sum, r, k;	
	  NErrors = 0;
	  
	  for (r = 1; r < 256; r++) {
	    sum = 0;
	    /* evaluate lambda at r */
	    for (k = 0; k < NPAR+1; k++) {
	      sum ^= gmult(gexp[(k*r)%255], Lambda[k]);
	    }
	    if (sum == 0) 
	      { 
		ErrorLocs[NErrors] = (255-r); NErrors++; 
		//if (DEBUG) fprintf(stderr, "Root found at r = %d, (255-r) = %d\n", r, (255-r));
	      }
	  }
	}

	/* Combined Erasure And Error Magnitude Computation 
	 * 
	 * Pass in the codeword, its size in bytes, as well as
	 * an array of any known erasure locations, along the number
	 * of these erasures.
	 * 
	 * Evaluate Omega(actually Psi)/Lambda' at the roots
	 * alpha^(-i) for error locs i. 
	 *
	 * Returns 1 if everything ok, or 0 if an out-of-bounds error is found
	 *
	 */

	int correct_errors_erasures (int[] codeword, 
				 int csize,
				 int nerasures,
				 int[] erasures)
	{
	  int r, i, j, err;

	  /* If you want to take advantage of erasure correction, be sure to
	     set NErasures and ErasureLocs[] with the locations of erasures. 
	     */
	  NErasures = nerasures;
	  for (i = 0; i < NErasures; i++) ErasureLocs[i] = erasures[i];

	  Modified_Berlekamp_Massey();
	  Find_Roots();
	  

	  if ((NErrors <= NPAR) && NErrors > 0) { 

	    /* first check for illegal error locs */
	    for (r = 0; r < NErrors; r++) {
	      if (ErrorLocs[r] >= csize) {
		//if (DEBUG) fprintf(stderr, "Error loc i=%d outside of codeword length %d\n", i, csize);
		return(0);
	      }
	    }

	    for (r = 0; r < NErrors; r++) {
	      int num, denom;
	      i = ErrorLocs[r];
	      /* evaluate Omega at alpha^(-i) */

	      num = 0;
	      for (j = 0; j < MAXDEG; j++) 
		num ^= gmult(Omega[j], gexp[((255-i)*j)%255]);
	      
	      /* evaluate Lambda' (derivative) at alpha^(-i) ; all odd powers disappear */
	      denom = 0;
	      for (j = 1; j < MAXDEG; j += 2) {
		denom ^= gmult(Lambda[j], gexp[((255-i)*(j-1)) % 255]);
	      }
	      
	      err = gmult(num, ginv(denom));
	      //if (DEBUG) fprintf(stderr, "Error magnitude %#x at loc %d\n", err, csize-i);
	      
	      codeword[csize-i-1] ^= err;
	    }
	    //for (int p = 0; p < codeword.length; p++)
	    //	System.out.println(codeword[p]);
	    return(1);
	  }
	  else {
	    //if (DEBUG && NErrors) fprintf(stderr, "Uncorrectable codeword\n");
	    return(0);
	  }
	}

}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -