📄 polparam.m
字号:
function[p,alpha,beta,preal,gamma]=polparam(varargin)% POLPARAM Spectral matrix polarization parameters.%% [P,ALPHA,BETA]=POLPARAM(S) where S is a 2x2 spectral matrix returns% the polarization paramters P, ALPHA, and BETA.%% If S is a 2 x 2 x M matrix, then all output variables are Mx1 column% vectors. More generally, if S is 2 x 2 x M x ... N, then all output% variables are M x ... N.% % [...]=POLPARAM(S11,S22,S12) also works. In this case all input variables% are matrices of the same size. % % [P,ALPHA,BETA,PREAL,GAMMA]=POLPARAM(S) also optionally retuns the% polarization ratio of the real part of S and the coherence GAMMA.%% See also SPECDIAG.%% Usage: [p,alpha,beta]=polparam(s);% [p,alpha,beta,preal,gamma]=polparam(s);% [p,alpha,beta,preal,gamma]=polparam(s11,s22,s12);% _________________________________________________________________% This is part of JLAB --- type 'help jlab' for more information% (C) 2004--2005 J.M. Lilly --- type 'help jlab_license' for details breshape=0;if nargin==1 S=varargin{1}; S11=S(1,1,:); S22=S(2,2,:); S12=S(1,2,:); S21=S(2,1,:);elseif nargin==3 S11=varargin{1}; S22=varargin{2}; S12=varargin{3}; S21=conj(varargin{3});enddetS=real(S11.*S22-S12.*S21);trS=S11+S22;p= sqrt(1 - frac(4.*detS,trS.*trS));alpha=frac(S11-S22,trS);beta=frac(2.*S12,trS);if nargout>3 detrS=real(S11.*S22-real(S12).^2); preal=sqrt(1 - frac(4.*detrS,trS.*trS));endif nargout>4 gamma=frac(S12,sqrt(S11.*S22));end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -