⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sufdmod2.c

📁 seismic software,very useful
💻 C
📖 第 1 页 / 共 2 页
字号:
void exsrc (int ns, float *xs, float *zs,	int nx, float dx, float fx,	int nz, float dz, float fz,	float dt, float t, float fmax, float **s)/*****************************************************************************update source pressure function for an extended source******************************************************************************Input:ns		number of x,z coordinates for extended sourcexs		array[ns] of x coordinates of extended sourcezs		array[ns] of z coordinates of extended sourcenx		number of x samplesdx		x sampling intervalfx		first x samplenz		number of z samplesdz		z sampling intervalfz		first z sampledt		time stept		time at which to compute source functionfmax		maximum frequencyOutput:s		array[nx][nz] of source pressure at time t+dt******************************************************************************Author:  Dave Hale, Colorado School of Mines, 03/01/90******************************************************************************/{	int ix,iz,ixv,izv,is;	float sigma,tbias,ascale,tscale,ts,xn,zn,		v,xv,zv,dxdv,dzdv,xvn,zvn,amp,dv,dist,distprev;	static float *vs,(*xsd)[4],(*zsd)[4];	static int made=0;		/* if not already made, make spline coefficients */	if (!made) {		vs = alloc1float(ns);		xsd = (float(*)[4])alloc1float(ns*4);		zsd = (float(*)[4])alloc1float(ns*4);		for (is=0; is<ns; ++is)			vs[is] = is;		cmonot(ns,vs,xs,xsd);		cmonot(ns,vs,zs,zsd);		made = 1;	}		/* zero source array */	for (ix=0; ix<nx; ++ix)		for (iz=0; iz<nz; ++iz)			s[ix][iz] = 0.0;		/* compute time-dependent part of source function */	sigma = 0.25/fmax;	tbias = 3.0*sigma;	ascale = -exp(0.5)/sigma;	tscale = 0.5/(sigma*sigma);	if (t>2.0*tbias) return;	ts = ascale*(t-tbias)*exp(-tscale*(t-tbias)*(t-tbias));		/* loop over extended source locations */	for (v=vs[0],distprev=0.0,dv=1.0; dv!=0.0; distprev=dist,v+=dv) {				/* determine x(v), z(v), dx/dv, and dz/dv along source */		intcub(0,ns,vs,xsd,1,&v,&xv);		intcub(0,ns,vs,zsd,1,&v,&zv);		intcub(1,ns,vs,xsd,1,&v,&dxdv);		intcub(1,ns,vs,zsd,1,&v,&dzdv);				/* determine increment along extended source */		if (dxdv==0.0)			dv = dz/ABS(dzdv);		else if (dzdv==0.0)			dv = dx/ABS(dxdv);		else			dv = MIN(dz/ABS(dzdv),dx/ABS(dxdv));		if (v+dv>vs[ns-1]) dv = vs[ns-1]-v;		dist = dv*sqrt(dzdv*dzdv+dxdv*dxdv)/sqrt(dx*dx+dz*dz);				/* determine source amplitude */		amp = (dist+distprev)/2.0;				/* let source contribute within limited distance */		xvn = (xv-fx)/dx;		zvn = (zv-fz)/dz;		ixv = NINT(xvn); 		izv = NINT(zvn);		for (ix=MAX(0,ixv-3); ix<=MIN(nx-1,ixv+3); ++ix) {			for (iz=MAX(0,izv-3); iz<=MIN(nz-1,izv+3); ++iz) {				xn = ix-xvn;				zn = iz-zvn;				s[ix][iz] += ts*amp*exp(-xn*xn-zn*zn);			}		}	}}static float ricker (float t, float fpeak);void ptsrc (float xs, float zs,	int nx, float dx, float fx,	int nz, float dz, float fz,	float dt, float t, float fmax, float fpeak, float tdelay, float **s)/*****************************************************************************update source pressure function for a point source******************************************************************************Input:xs		x coordinate of point sourcezs		z coordinate of point sourcenx		number of x samplesdx		x sampling intervalfx		first x samplenz		number of z samplesdz		z sampling intervalfz		first z sampledt		time stept		time at which to compute source functionfmax		maximum frequencyfpeak		peak frequencyOutput:tdelay		time delay of beginning of source functions		array[nx][nz] of source pressure at time t+dt******************************************************************************Author:  Dave Hale, Colorado School of Mines, 03/01/90******************************************************************************/{	int ix,iz,ixs,izs;	float ts,xn,zn,xsn,zsn;		/* zero source array */	for (ix=0; ix<nx; ++ix)		for (iz=0; iz<nz; ++iz)			s[ix][iz] = 0.0;		/* compute time-dependent part of source function */	/* fpeak = 0.5*fmax;  this is now getparred */	tdelay = 1.0/fpeak;	if (t>2.0*tdelay) return;	ts = ricker(t-tdelay,fpeak);		/* let source contribute within limited distance */	xsn = (xs-fx)/dx;	zsn = (zs-fz)/dz;	ixs = NINT(xsn);	izs = NINT(zsn);	for (ix=MAX(0,ixs-3); ix<=MIN(nx-1,ixs+3); ++ix) {		for (iz=MAX(0,izs-3); iz<=MIN(nz-1,izs+3); ++iz) {			xn = ix-xsn;			zn = iz-zsn;			s[ix][iz] = ts*exp(-xn*xn-zn*zn);		}	}}static float ricker (float t, float fpeak)/*****************************************************************************Compute Ricker wavelet as a function of time******************************************************************************Input:t		time at which to evaluate Ricker waveletfpeak		peak (dominant) frequency of wavelet******************************************************************************Notes:The amplitude of the Ricker wavelet at a frequency of 2.5*fpeak is approximately 4 percent of that at the dominant frequency fpeak.The Ricker wavelet effectively begins at time t = -1.0/fpeak.  Therefore,for practical purposes, a causal wavelet may be obtained by a time delayof 1.0/fpeak.The Ricker wavelet has the shape of the second derivative of a Gaussian.******************************************************************************Author:  Dave Hale, Colorado School of Mines, 04/29/90******************************************************************************/{	float x,xx;		x = PI*fpeak*t;	xx = x*x;	/* return (-6.0+24.0*xx-8.0*xx*xx)*exp(-xx); */	/* return PI*fpeak*(4.0*xx*x-6.0*x)*exp(-xx); */	return exp(-xx)*(1.0-2.0*xx);}/* 2D finite differencing subroutine *//* functions declared and used internally */static void star1 (int nx, float dx, int nz, float dz, float dt,	float **dvv, float **od, float **s,	float **pm, float **p, float **pp);static void star2 (int nx, float dx, int nz, float dz, float dt,	float **dvv, float **od, float **s,	float **pm, float **p, float **pp);static void star3 (int nx, float dx, int nz, float dz, float dt,	float **dvv, float **od, float **s,	float **pm, float **p, float **pp);static void star4 (int nx, float dx, int nz, float dz, float dt,	float **dvv, float **od, float **s,	float **pm, float **p, float **pp);static void absorb (int nx, float dx, int nz, float dz, float dt,	float **dvv, float **od, float **pm, float **p, float **pp,	int *abs);void tstep2 (int nx, float dx, int nz, float dz, float dt,	float **dvv, float **od, float **s,	float **pm, float **p, float **pp, int *abs)/*****************************************************************************One time step of FD solution (2nd order in space) to acoustic wave equation******************************************************************************Input:nx		number of x samplesdx		x sampling intervalnz		number of z samplesdz		z sampling intervaldt		time stepdvv		array[nx][nz] of density*velocity^2od		array[nx][nz] of 1/density (NULL for constant density=1.0)s		array[nx][nz] of source pressure at time t+dtpm		array[nx][nz] of pressure at time t-dtp		array[nx][nz] of pressure at time tOutput:pp		array[nx][nz] of pressure at time t+dt******************************************************************************Notes:This function is optimized for special cases of constant density=1 and/orequal spatial sampling intervals dx=dz.  The slowest case is variabledensity and dx!=dz.  The fastest case is density=1.0 (od==NULL) and dx==dz.******************************************************************************Author:  Dave Hale, Colorado School of Mines, 03/13/90******************************************************************************/{	/* convolve with finite-difference star (special cases for speed) */	if (od!=NULL && dx!=dz) {		star1(nx,dx,nz,dz,dt,dvv,od,s,pm,p,pp);	} else if (od!=NULL && dx==dz) {		star2(nx,dx,nz,dz,dt,dvv,od,s,pm,p,pp);	} else if (od==NULL && dx!=dz) {		star3(nx,dx,nz,dz,dt,dvv,od,s,pm,p,pp);	} else {		star4(nx,dx,nz,dz,dt,dvv,od,s,pm,p,pp);	}		/* absorb along boundaries */	absorb(nx,dx,nz,dz,dt,dvv,od,pm,p,pp,abs);}/* convolve with finite-difference star for variable density and dx!=dz */static void star1 (int nx, float dx, int nz, float dz, float dt,	float **dvv, float **od, float **s,	float **pm, float **p, float **pp){	int ix,iz;	float xscale1,zscale1,xscale2,zscale2;			/* determine constants */	xscale1 = (dt*dt)/(dx*dx);	zscale1 = (dt*dt)/(dz*dz);	xscale2 = 0.25*xscale1;	zscale2 = 0.25*zscale1;		/* do the finite-difference star */	for (ix=1; ix<nx-1; ++ix) {		for (iz=1; iz<nz-1; ++iz) {			pp[ix][iz] = 2.0*p[ix][iz]-pm[ix][iz] +				dvv[ix][iz]*(					od[ix][iz]*(						xscale1*(							p[ix+1][iz]+							p[ix-1][iz]-							2.0*p[ix][iz]						) +						zscale1*(							p[ix][iz+1]+							p[ix][iz-1]-							2.0*p[ix][iz]						)					) +					(						xscale2*(							(od[ix+1][iz]-							od[ix-1][iz]) *							(p[ix+1][iz]-							p[ix-1][iz])						) +						zscale2*(							(od[ix][iz+1]-							od[ix][iz-1])*							(p[ix][iz+1]-							p[ix][iz-1])						)					)				) +				s[ix][iz];		}	}}/* convolve with finite-difference star for variable density and dx==dz */static void star2 (int nx, float dx, int nz, float dz, float dt,	float **dvv, float **od, float **s,	float **pm, float **p, float **pp){	int ix,iz;	float scale1,scale2;		/* determine constants */	scale1 = (dt*dt)/(dx*dx);	scale2 = 0.25*scale1;		/* do the finite-difference star */	for (ix=1; ix<nx-1; ++ix) {		for (iz=1; iz<nz-1; ++iz) {			pp[ix][iz] = 2.0*p[ix][iz]-pm[ix][iz] +				dvv[ix][iz]*(					od[ix][iz]*(						scale1*(							p[ix+1][iz]+							p[ix-1][iz]+							p[ix][iz+1]+							p[ix][iz-1]-							4.0*p[ix][iz]						)					) +					(						scale2*(							(od[ix+1][iz]-							od[ix-1][iz]) *							(p[ix+1][iz]-							p[ix-1][iz]) +							(od[ix][iz+1]-							od[ix][iz-1]) *							(p[ix][iz+1]-							p[ix][iz-1])						)					)				) +				s[ix][iz];		}	}}/* convolve with finite-difference star for density==1.0 and dx!=dz */static void star3 (int nx, float dx, int nz, float dz, float dt,	float **dvv, float **od, float **s,	float **pm, float **p, float **pp){	int ix,iz;	float xscale,zscale;			/* determine constants */	xscale = (dt*dt)/(dx*dx);	zscale = (dt*dt)/(dz*dz);		/* do the finite-difference star */	for (ix=1; ix<nx-1; ++ix) {		for (iz=1; iz<nz-1; ++iz) {			pp[ix][iz] = 2.0*p[ix][iz]-pm[ix][iz] +				dvv[ix][iz]*(					xscale*(						p[ix+1][iz]+						p[ix-1][iz]-						2.0*p[ix][iz]					) +					zscale*(						p[ix][iz+1]+						p[ix][iz-1]-						2.0*p[ix][iz]					)				) +				s[ix][iz];		}	}}/* convolve with finite-difference star for density==1.0 and dx==dz */static void star4 (int nx, float dx, int nz, float dz, float dt,	float **dvv, float **od, float **s,	float **pm, float **p, float **pp){	int ix,iz;	float scale;		/* determine constants */	scale = (dt*dt)/(dx*dx);		/* do the finite-difference star */	for (ix=1; ix<nx-1; ++ix) {		for (iz=1; iz<nz-1; ++iz) {			pp[ix][iz] = 2.0*p[ix][iz]-pm[ix][iz] +				scale*dvv[ix][iz]*(					p[ix+1][iz]+					p[ix-1][iz]+					p[ix][iz+1]+					p[ix][iz-1]-					4.0*p[ix][iz]				) +				s[ix][iz];		}	}}static void absorb (int nx, float dx, int nz, float dz, float dt,	float **dvv, float **od, float **pm, float **p, float **pp,	int *abs){	int ix,iz;	float ov,ovs,cosa,beta,gamma,dpdx,dpdz,dpdt,dpdxs,dpdzs,dpdts;	/* solve for upper boundary */	iz = 1;	for (ix=0; ix<nx; ++ix) {		if (abs[0]!=0) {			if (od!=NULL)				ovs = 1.0/(od[ix][iz]*dvv[ix][iz]);			else				ovs = 1.0/dvv[ix][iz];			ov = sqrt(ovs);			if (ix==0)				dpdx = (p[1][iz]-p[0][iz])/dx;			else if (ix==nx-1)				dpdx = (p[nx-1][iz]-p[nx-2][iz])/dx;			else				dpdx = (p[ix+1][iz]-p[ix-1][iz])/(2.0*dx);			dpdt = (pp[ix][iz]-pm[ix][iz])/(2.0*dt);			dpdxs = dpdx*dpdx;			dpdts = dpdt*dpdt;			if (ovs*dpdts>dpdxs)				cosa = sqrt(1.0-dpdxs/(ovs*dpdts));			else 				cosa = 0.0;			beta = ov*dz/dt*cosa;			gamma = (1.0-beta)/(1.0+beta);			pp[ix][iz-1] = gamma*(pp[ix][iz]-p[ix][iz-1])+p[ix][iz];		} else {			pp[ix][iz-1] = 0.0;		}	}	/* extrapolate along left boundary */	ix = 1;	for (iz=0; iz<nz; ++iz) {		if (abs[1]!=0) {			if (od!=NULL)				ovs = 1.0/(od[ix][iz]*dvv[ix][iz]);			else				ovs = 1.0/dvv[ix][iz];			ov = sqrt(ovs);			if (iz==0)				dpdz = (p[ix][1]-p[ix][0])/dz;			else if (iz==nz-1)				dpdz = (p[ix][nz-1]-p[ix][nz-2])/dz;			else				dpdz = (p[ix][iz+1]-p[ix][iz-1])/(2.0*dz);			dpdt = (pp[ix][iz]-pm[ix][iz])/(2.0*dt);			dpdzs = dpdz*dpdz;			dpdts = dpdt*dpdt;			if (ovs*dpdts>dpdzs)				cosa = sqrt(1.0-dpdzs/(ovs*dpdts));			else				cosa = 0.0;			beta = ov*dx/dt*cosa;			gamma = (1.0-beta)/(1.0+beta);			pp[ix-1][iz] = gamma*(pp[ix][iz]-p[ix-1][iz])+p[ix][iz];		} else {			pp[ix-1][iz] = 0.0;		}	}	/* extrapolate along lower boundary */	iz = nz-2;	for (ix=0; ix<nx; ++ix) {		if (abs[2]!=0) {			if (od!=NULL)				ovs = 1.0/(od[ix][iz]*dvv[ix][iz]);			else				ovs = 1.0/dvv[ix][iz];			ov = sqrt(ovs);			if (ix==0)				dpdx = (p[1][iz]-p[0][iz])/dx;			else if (ix==nx-1)				dpdx = (p[nx-1][iz]-p[nx-2][iz])/dx;			else				dpdx = (p[ix+1][iz]-p[ix-1][iz])/(2.0*dx);			dpdt = (pp[ix][iz]-pm[ix][iz])/(2.0*dt);			dpdxs = dpdx*dpdx;			dpdts = dpdt*dpdt;			if (ovs*dpdts>dpdxs)				cosa = sqrt(1.0-dpdxs/(ovs*dpdts));			else				cosa = 0.0;			beta = ov*dz/dt*cosa;			gamma = (1.0-beta)/(1.0+beta);			pp[ix][iz+1] = gamma*(pp[ix][iz]-p[ix][iz+1])+p[ix][iz];		} else {			pp[ix][iz+1] = 0.0;		}	}	/* extrapolate along right boundary */	ix = nx-2;	for (iz=0; iz<nz; ++iz) {		if (abs[3]!=0) {			if (od!=NULL)				ovs = 1.0/(od[ix][iz]*dvv[ix][iz]);			else				ovs = 1.0/dvv[ix][iz];			ov = sqrt(ovs);			if (iz==0)				dpdz = (p[ix][1]-p[ix][0])/dz;			else if (iz==nz-1)				dpdz = (p[ix][nz-1]-p[ix][nz-2])/dz;			else				dpdz = (p[ix][iz+1]-p[ix][iz-1])/(2.0*dz);			dpdt = (pp[ix][iz]-pm[ix][iz])/(2.0*dt);			dpdzs = dpdz*dpdz;			dpdts = dpdt*dpdt;			if (ovs*dpdts>dpdzs)				cosa = sqrt(1.0-dpdzs/(ovs*dpdts));			else				cosa = 0.0;			beta = ov*dx/dt*cosa;			gamma = (1.0-beta)/(1.0+beta);			pp[ix+1][iz] =gamma*(pp[ix][iz]-p[ix+1][iz])+p[ix][iz];		} else {			pp[ix+1][iz] = 0.0;		}	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -