📄 squareroot.scala
字号:
/* __ *\** ________ ___ / / ___ Scala API **** / __/ __// _ | / / / _ | (c) 2007-2008, LAMP/EPFL **** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **** /____/\___/_/ |_/____/_/ | | **** |/ **\* */// $Id: SquareRoot.scala 14416 2008-03-19 01:17:25Z mihaylov $package scala.runtimeimport Predef._/** * <p> * Integer Square Root function (see http://atoms.alife.co.uk/sqrt/index.html). * </p> * <p> * Contributors include Arne Steinarson for the basic approximation idea, Dann * Corbit and Mathew Hendry for the first cut at the algorithm, Lawrence Kirby * for the rearrangement, improvments and range optimization, Paul Hsieh * for the round-then-adjust idea, Tim Tyler, for the Java port * and Jeff Lawson for a bug-fix and some code to improve accuracy. * </p> * * @version v0.02 - 2003/09/07 *//** * Faster replacements for <code>(int)(java.lang.Math.sqrt(integer))</code> */object SquareRoot { private val table = Array( 0, 16, 22, 27, 32, 35, 39, 42, 45, 48, 50, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155, 156, 157, 158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166, 167, 167, 168, 169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, 178, 179, 180, 181, 181, 182, 183, 183, 184, 185, 185, 186, 187, 187, 188, 189, 189, 190, 191, 192, 192, 193, 193, 194, 195, 195, 196, 197, 197, 198, 199, 199, 200, 201, 201, 202, 203, 203, 204, 204, 205, 206, 206, 207, 208, 208, 209, 209, 210, 211, 211, 212, 212, 213, 214, 214, 215, 215, 216, 217, 217, 218, 218, 219, 219, 220, 221, 221, 222, 222, 223, 224, 224, 225, 225, 226, 226, 227, 227, 228, 229, 229, 230, 230, 231, 231, 232, 232, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253, 253, 254, 254, 255 ) /** * <p> * A faster replacement for <code>(int)(java.lang.Math.sqrt(x))</code>. * Completely accurate for <code>x < 2147483648 (i.e. 2^31)</code>... * </p> * <p> * Adjusted to more closely approximate "(int)(java.lang.Math.sqrt(x) + 0.5)" * by Jeff Lawson. * </p> */ @throws(classOf[IllegalArgumentException]) def accurateSqrt(x: Int): Int = { if (x >= 0x10000) { val xn = if (x >= 0x1000000) { var xn0 = if (x >= 0x10000000) if (x >= 0x40000000) table(x >> 24) << 8 else table(x >> 22) << 7 else if (x >= 0x4000000) table(x >> 20) << 6 else table(x >> 18) << 5 xn0 = (xn0 + 1 + (x / xn0)) >> 1 (xn0 + 1 + (x / xn0)) >> 1 } else { var xn0 = if (x >= 0x100000) if (x >= 0x400000) table(x >> 16) << 4 else table(x >> 14) << 3 else if (x >= 0x40000) table(x >> 12) << 2 else table(x >> 10) << 1 (xn0 + 1 + (x / xn0)) >> 1 } adjustment(x, xn) } else if (x >= 0x100) { val xn = if (x >= 0x1000) if (x >= 0x4000) (table(x >> 8)) + 1 else (table(x >> 6) >> 1) + 1 else if (x >= 0x400) (table(x >> 4) >> 2) + 1 else (table(x >> 2) >> 3) + 1 adjustment(x, xn) } else if (x >= 0) { adjustment(x, table(x) >> 4) } else { throw new IllegalArgumentException("Attempt to take the square root of negative number") -1 } } private def adjustment(x: Int, xn: Int): Int = { // Added by Jeff Lawson: // need to test: // if |xn * xn - x| > |x - (xn-1) * (xn-1)| then xn-1 is more accurate // if |xn * xn - x| > |(xn+1) * (xn+1) - x| then xn+1 is more accurate // or, for all cases except x == 0: // if |xn * xn - x| > x - xn * xn + 2 * xn - 1 then xn-1 is more accurate // if |xn * xn - x| > xn * xn + 2 * xn + 1 - x then xn+1 is more accurate val xn2 = xn * xn // |xn * xn - x| var comparitor0 = xn2 - x if (comparitor0 < 0) comparitor0 = -comparitor0 val twice_xn = xn << 1 // |x - (xn-1) * (xn-1)| var comparitor1 = x - xn2 + twice_xn - 1 if (comparitor1 < 0) comparitor1 = -comparitor1 // only gets here when x == 0 // |(xn+1) * (xn+1) - x| val comparitor2 = xn2 + twice_xn + 1 - x if (comparitor0 > comparitor1) if (comparitor1 > comparitor2) xn+1 else xn-1 else if (comparitor0 > comparitor2) xn+1 else xn } def main(args: Array[String]) { def toInt(s: String): Option[Int] = try { Some(s.toInt) } catch { case e: NumberFormatException => None } for (arg <- args; val x = toInt(arg); if !x.isEmpty) { val n = x.get println("sqrt("+n+") = "+accurateSqrt(n)) } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -