⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jidct.c

📁 在ecos 下mingui 的移植开发
💻 C
📖 第 1 页 / 共 2 页
字号:
    outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)			    & RANGE_MASK];    outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)			    & RANGE_MASK];    wsptr += DCTSIZE;		/* advance pointer to next row */  }}#endif /* DCT_IFAST_SUPPORTED */#ifdef IDCT_SCALING_SUPPORTED#ifdef MULTIPLY#undef MULTIPLY#endif#if BITS_IN_JSAMPLE == 8#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)#else#define MULTIPLY(var,const)  ((var) * (const))#endif/* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce an int result.  In this module, both inputs and result * are 16 bits or less, so either int or short multiply will work. */#ifdef DEQUANTIZE#undef DEQUANTIZE#endif#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))/* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 4x4 output block. */GLOBAL(void)jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,	       JCOEFPTR coef_block,	       JSAMPARRAY output_buf, JDIMENSION output_col){  INT32 tmp0, tmp2, tmp10, tmp12;  INT32 z1, z2, z3, z4;  JCOEFPTR inptr;  ISLOW_MULT_TYPE * quantptr;  int * wsptr;  JSAMPROW outptr;  JSAMPLE *range_limit = IDCT_range_limit(cinfo);  int ctr;  int workspace[DCTSIZE*4];	/* buffers data between passes */  SHIFT_TEMPS  /* Pass 1: process columns from input, store into work array. */  inptr = coef_block;  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;  wsptr = workspace;  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {    /* Don't bother to process column 4, because second pass won't use it */    if (ctr == DCTSIZE-4)      continue;    if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |	 inptr[DCTSIZE*5] | inptr[DCTSIZE*6] | inptr[DCTSIZE*7]) == 0) {      /* AC terms all zero; we need not examine term 4 for 4x4 output */      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;            wsptr[DCTSIZE*0] = dcval;      wsptr[DCTSIZE*1] = dcval;      wsptr[DCTSIZE*2] = dcval;      wsptr[DCTSIZE*3] = dcval;            continue;    }        /* Even part */        tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);    tmp0 <<= (CONST_BITS+1);        z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);        tmp10 = tmp0 + tmp2;    tmp12 = tmp0 - tmp2;        /* Odd part */        z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);    z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);    z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);    z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);        tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */        tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */    /* Final output stage */        wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);  }    /* Pass 2: process 4 rows from work array, store into output array. */  wsptr = workspace;  for (ctr = 0; ctr < 4; ctr++) {    outptr = output_buf[ctr] + output_col;    /* It's not clear whether a zero row test is worthwhile here ... */#ifndef NO_ZERO_ROW_TEST    if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[5] | wsptr[6] |	 wsptr[7]) == 0) {      /* AC terms all zero */      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)				  & RANGE_MASK];            outptr[0] = dcval;      outptr[1] = dcval;      outptr[2] = dcval;      outptr[3] = dcval;            wsptr += DCTSIZE;		/* advance pointer to next row */      continue;    }#endif        /* Even part */        tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);        tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)	 + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);        tmp10 = tmp0 + tmp2;    tmp12 = tmp0 - tmp2;        /* Odd part */        z1 = (INT32) wsptr[7];    z2 = (INT32) wsptr[5];    z3 = (INT32) wsptr[3];    z4 = (INT32) wsptr[1];        tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */        tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */    /* Final output stage */        outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,					  CONST_BITS+PASS1_BITS+3+1)			    & RANGE_MASK];    outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,					  CONST_BITS+PASS1_BITS+3+1)			    & RANGE_MASK];    outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,					  CONST_BITS+PASS1_BITS+3+1)			    & RANGE_MASK];    outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,					  CONST_BITS+PASS1_BITS+3+1)			    & RANGE_MASK];        wsptr += DCTSIZE;		/* advance pointer to next row */  }}/* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 2x2 output block. */GLOBAL(void)jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,	       JCOEFPTR coef_block,	       JSAMPARRAY output_buf, JDIMENSION output_col){  INT32 tmp0, tmp10, z1;  JCOEFPTR inptr;  ISLOW_MULT_TYPE * quantptr;  int * wsptr;  JSAMPROW outptr;  JSAMPLE *range_limit = IDCT_range_limit(cinfo);  int ctr;  int workspace[DCTSIZE*2];	/* buffers data between passes */  SHIFT_TEMPS  /* Pass 1: process columns from input, store into work array. */  inptr = coef_block;  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;  wsptr = workspace;  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {    /* Don't bother to process columns 2,4,6 */    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)      continue;    if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*3] |	 inptr[DCTSIZE*5] | inptr[DCTSIZE*7]) == 0) {      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;            wsptr[DCTSIZE*0] = dcval;      wsptr[DCTSIZE*1] = dcval;            continue;    }        /* Even part */        z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);    tmp10 = z1 << (CONST_BITS+2);        /* Odd part */    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */    z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */    z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */    z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */    /* Final output stage */        wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);  }    /* Pass 2: process 2 rows from work array, store into output array. */  wsptr = workspace;  for (ctr = 0; ctr < 2; ctr++) {    outptr = output_buf[ctr] + output_col;    /* It's not clear whether a zero row test is worthwhile here ... */#ifndef NO_ZERO_ROW_TEST    if ((wsptr[1] | wsptr[3] | wsptr[5] | wsptr[7]) == 0) {      /* AC terms all zero */      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)				  & RANGE_MASK];            outptr[0] = dcval;      outptr[1] = dcval;            wsptr += DCTSIZE;		/* advance pointer to next row */      continue;    }#endif        /* Even part */        tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);        /* Odd part */    tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */	 + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */	 + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */	 + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */    /* Final output stage */        outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,					  CONST_BITS+PASS1_BITS+3+2)			    & RANGE_MASK];    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,					  CONST_BITS+PASS1_BITS+3+2)			    & RANGE_MASK];        wsptr += DCTSIZE;		/* advance pointer to next row */  }}/* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 1x1 output block. */GLOBAL(void)jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,	       JCOEFPTR coef_block,	       JSAMPARRAY output_buf, JDIMENSION output_col){  int dcval;  ISLOW_MULT_TYPE * quantptr;  JSAMPLE *range_limit = IDCT_range_limit(cinfo);  SHIFT_TEMPS  /* We hardly need an inverse DCT routine for this: just take the   * average pixel value, which is one-eighth of the DC coefficient.   */  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;  dcval = DEQUANTIZE(coef_block[0], quantptr[0]);  dcval = (int) DESCALE((INT32) dcval, 3);  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];}#endif /* IDCT_SCALING_SUPPORTED */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -