📄 lzari.c
字号:
/* Credits for lzari go to Haruhiko Okumura */
#include <stdio.h>
#include <stdlib.h>
/* #include <string.h>
#include <ctype.h> */
#include "globals.h"
void rewind_buffer(void)
{
from_pointer = 0;
return;
}
void Error(char *message)
{
printf("\n%s\n", message);
exit(EXIT_FAILURE);
}
void PutBit(int bit) /* Output one bit (bit = 0,1) */
{
static unsigned int buffer = 0, mask = 128;
if (bit) buffer |= mask;
if ((mask >>= 1) == 0) {
if (putc_buffer(buffer) == EOF) Error("Write Error");
buffer = 0; mask = 128; codesize++;
}
}
void FlushBitBuffer(void) /* Send remaining bits */
{
int i;
for (i = 0; i < 7; i++) PutBit(0);
}
int GetBit(void) /* Get one bit (0 or 1) */
{
static unsigned int buffer, mask = 0;
if ((mask >>= 1) == 0) {
buffer = getc_buffer(); mask = 128;
}
return ((buffer & mask) != 0);
}
/********** LZSS with multiple binary trees **********/
void lzari_InitTree(void) /* Initialize trees */
{
int i;
/* For i = 0 to N - 1, rson[i] and lson[i] will be the right and
left children of node i. These nodes need not be initialized.
Also, dad[i] is the parent of node i. These are initialized to
NIL (= N), which stands for 'not used.'
For i = 0 to 255, rson[N + i + 1] is the root of the tree
for strings that begin with character i. These are initialized
to NIL. Note there are 256 trees. */
for (i = N + 1; i <= N + 256; i++) rson[i] = NIL; /* root */
for (i = 0; i < N; i++) dad[i] = NIL; /* node */
}
void lzari_InsertNode(int r)
/* Inserts string of length F, text_buf[r..r+F-1], into one of the
trees (text_buf[r]'th tree) and returns the longest-match position
and length via the global variables match_position and match_length.
If match_length = F, then removes the old node in favor of the new
one, because the old one will be deleted sooner.
Note r plays double role, as tree node and position in buffer. */
{
int i, p, cmp, temp;
unsigned char *key;
cmp = 1; key = &text_buf[r]; p = N + 1 + key[0];
rson[r] = lson[r] = NIL; match_length = 0;
for ( ; ; ) {
if (cmp >= 0) {
if (rson[p] != NIL) p = rson[p];
else { rson[p] = r; dad[r] = p; return; }
} else {
if (lson[p] != NIL) p = lson[p];
else { lson[p] = r; dad[r] = p; return; }
}
for (i = 1; i < F_ARI; i++)
if ((cmp = key[i] - text_buf[p + i]) != 0) break;
if (i > THRESHOLD) {
if (i > match_length) {
match_position = (r - p) & (N - 1);
if ((match_length = i) >= F_ARI) break;
} else if (i == match_length) {
if ((temp = (r - p) & (N - 1)) < match_position)
match_position = temp;
}
}
}
dad[r] = dad[p]; lson[r] = lson[p]; rson[r] = rson[p];
dad[lson[p]] = r; dad[rson[p]] = r;
if (rson[dad[p]] == p) rson[dad[p]] = r;
else lson[dad[p]] = r;
dad[p] = NIL; /* remove p */
}
void lzari_DeleteNode(int p) /* Delete node p from tree */
{
int q;
if (dad[p] == NIL) return; /* not in tree */
if (rson[p] == NIL) q = lson[p];
else if (lson[p] == NIL) q = rson[p];
else {
q = lson[p];
if (rson[q] != NIL) {
do { q = rson[q]; } while (rson[q] != NIL);
rson[dad[q]] = lson[q]; dad[lson[q]] = dad[q];
lson[q] = lson[p]; dad[lson[p]] = q;
}
rson[q] = rson[p]; dad[rson[p]] = q;
}
dad[q] = dad[p];
if (rson[dad[p]] == p) rson[dad[p]] = q;
else lson[dad[p]] = q;
dad[p] = NIL;
}
/********** Arithmetic Compression **********/
/* If you are not familiar with arithmetic compression, you should read
I. E. Witten, R. M. Neal, and J. G. Cleary,
Communications of the ACM, Vol. 30, pp. 520-540 (1987),
from which much have been borrowed. */
#define M 15
/* Q1 (= 2 to the M) must be sufficiently large, but not so
large as the unsigned long 4 * Q1 * (Q1 - 1) overflows. */
#define Q1 (1UL << M)
#define Q2 (2 * Q1)
#define Q3 (3 * Q1)
#define Q4 (4 * Q1)
#define MAX_CUM (Q1 - 1)
#define N_CHAR (256 - THRESHOLD + F_ARI)
/* character code = 0, 1, ..., N_CHAR - 1 */
unsigned long int low = 0, high = Q4, value = 0;
int shifts = 0; /* counts for magnifying low and high around Q2 */
int char_to_sym[N_CHAR], sym_to_char[N_CHAR + 1];
unsigned int
sym_freq[N_CHAR + 1], /* frequency for symbols */
sym_cum[N_CHAR + 1], /* cumulative freq for symbols */
position_cum[N + 1]; /* cumulative freq for positions */
void StartModel(void) /* Initialize model */
{
int ch, sym, i;
sym_cum[N_CHAR] = 0;
for (sym = N_CHAR; sym >= 1; sym--) {
ch = sym - 1;
char_to_sym[ch] = sym; sym_to_char[sym] = ch;
sym_freq[sym] = 1;
sym_cum[sym - 1] = sym_cum[sym] + sym_freq[sym];
}
sym_freq[0] = 0; /* sentinel (!= sym_freq[1]) */
position_cum[N] = 0;
for (i = N; i >= 1; i--)
position_cum[i - 1] = position_cum[i] + 10000 / (i + 200);
/* empirical distribution function (quite tentative) */
/* Please devise a better mechanism! */
}
void UpdateModel(int sym)
{
int i, c, ch_i, ch_sym;
if (sym_cum[0] >= MAX_CUM) {
c = 0;
for (i = N_CHAR; i > 0; i--) {
sym_cum[i] = c;
c += (sym_freq[i] = (sym_freq[i] + 1) >> 1);
}
sym_cum[0] = c;
}
for (i = sym; sym_freq[i] == sym_freq[i - 1]; i--) ;
if (i < sym) {
ch_i = sym_to_char[i]; ch_sym = sym_to_char[sym];
sym_to_char[i] = ch_sym; sym_to_char[sym] = ch_i;
char_to_sym[ch_i] = sym; char_to_sym[ch_sym] = i;
}
sym_freq[i]++;
while (--i >= 0) sym_cum[i]++;
}
static void Output(int bit) /* Output 1 bit, followed by its complements */
{
PutBit(bit);
for ( ; shifts > 0; shifts--) PutBit(! bit);
}
void EncodeChar(int ch)
{
int sym;
unsigned long int range;
sym = char_to_sym[ch];
range = high - low;
high = low + (range * sym_cum[sym - 1]) / sym_cum[0];
low += (range * sym_cum[sym ]) / sym_cum[0];
for ( ; ; ) {
if (high <= Q2) Output(0);
else if (low >= Q2) {
Output(1); low -= Q2; high -= Q2;
} else if (low >= Q1 && high <= Q3) {
shifts++; low -= Q1; high -= Q1;
} else break;
low += low; high += high;
}
UpdateModel(sym);
}
void EncodePosition(int position)
{
unsigned long int range;
range = high - low;
high = low + (range * position_cum[position ]) / position_cum[0];
low += (range * position_cum[position + 1]) / position_cum[0];
for ( ; ; ) {
if (high <= Q2) Output(0);
else if (low >= Q2) {
Output(1); low -= Q2; high -= Q2;
} else if (low >= Q1 && high <= Q3) {
shifts++; low -= Q1; high -= Q1;
} else break;
low += low; high += high;
}
}
void EncodeEnd(void)
{
shifts++;
if (low < Q1) Output(0); else Output(1);
FlushBitBuffer(); /* flush bits remaining in buffer */
}
int BinarySearchSym(unsigned int x)
/* 1 if x >= sym_cum[1],
N_CHAR if sym_cum[N_CHAR] > x,
i such that sym_cum[i - 1] > x >= sym_cum[i] otherwise */
{
int i, j, k;
i = 1; j = N_CHAR;
while (i < j) {
k = (i + j) / 2;
if (sym_cum[k] > x) i = k + 1; else j = k;
}
return i;
}
int BinarySearchPos(unsigned int x)
/* 0 if x >= position_cum[1],
N - 1 if position_cum[N] > x,
i such that position_cum[i] > x >= position_cum[i + 1] otherwise */
{
int i, j, k;
i = 1; j = N;
while (i < j) {
k = (i + j) / 2;
if (position_cum[k] > x) i = k + 1; else j = k;
}
return i - 1;
}
void StartDecode(void)
{
int i;
for (i = 0; i < M + 2; i++)
value = 2 * value + GetBit();
}
int DecodeChar(void)
{
int sym, ch;
unsigned long int range;
range = high - low;
sym = BinarySearchSym((unsigned int)
(((value - low + 1) * sym_cum[0] - 1) / range));
high = low + (range * sym_cum[sym - 1]) / sym_cum[0];
low += (range * sym_cum[sym ]) / sym_cum[0];
for ( ; ; ) {
if (low >= Q2) {
value -= Q2; low -= Q2; high -= Q2;
} else if (low >= Q1 && high <= Q3) {
value -= Q1; low -= Q1; high -= Q1;
} else if (high > Q2) break;
low += low; high += high;
value = 2 * value + GetBit();
}
ch = sym_to_char[sym];
UpdateModel(sym);
return ch;
}
int DecodePosition(void)
{
int position;
unsigned long int range;
range = high - low;
position = BinarySearchPos((unsigned int)
(((value - low + 1) * position_cum[0] - 1) / range));
high = low + (range * position_cum[position ]) / position_cum[0];
low += (range * position_cum[position + 1]) / position_cum[0];
for ( ; ; ) {
if (low >= Q2) {
value -= Q2; low -= Q2; high -= Q2;
} else if (low >= Q1 && high <= Q3) {
value -= Q1; low -= Q1; high -= Q1;
} else if (high > Q2) break;
low += low; high += high;
value = 2 * value + GetBit();
}
return position;
}
/********** Encode and Decode **********/
void lzari_Encode(long real_size)
{
int i, c, len, r, s, last_match_length;
textsize = real_size;
putc_buffer((textsize & 0xff000000) >> 24);
putc_buffer((textsize & 0x00ff0000) >> 16);
putc_buffer((textsize & 0x0000ff00) >> 8);
putc_buffer(textsize & 0x000000ff);
codesize += sizeof textsize;
if (textsize == 0) return;
rewind_buffer(); textsize = 0;
StartModel(); lzari_InitTree();
s = 0; r = N - F_ARI;
for (i = s; i < r; i++) text_buf[i] = ' ';
for (len = 0; len < F_ARI && (c = getc_buffer()) != EOF; len++)
text_buf[r + len] = c;
textsize = len;
for (i = 1; i <= F_ARI; i++) lzari_InsertNode(r - i);
lzari_InsertNode(r);
do {
if (match_length > len) match_length = len;
if (match_length <= THRESHOLD) {
match_length = 1; EncodeChar(text_buf[r]);
} else {
EncodeChar(255 - THRESHOLD + match_length);
EncodePosition(match_position - 1);
}
last_match_length = match_length;
for (i = 0; i < last_match_length &&
(c = getc_buffer()) != EOF; i++) {
lzari_DeleteNode(s); text_buf[s] = c;
if (s < F_ARI - 1) text_buf[s + N] = c;
s = (s + 1) & (N - 1);
r = (r + 1) & (N - 1);
lzari_InsertNode(r);
}
if ((textsize += i) > printcount) {
printf("%12ld\r", textsize); printcount += 1024;
}
while (i++ < last_match_length) {
lzari_DeleteNode(s);
s = (s + 1) & (N - 1);
r = (r + 1) & (N - 1);
if (--len) lzari_InsertNode(r);
}
} while (len > 0);
EncodeEnd();
printf("original data: %ld bytes\n", textsize);
printf("compressed data: %ld bytes\n", codesize);
}
void lzari_Decode(void)
{
int i, j, k, r, c;
unsigned long int count;
textsize = 0;
textsize |= getc_buffer() << 24;
textsize |= getc_buffer() << 16;
textsize |= getc_buffer() << 8;
textsize |= getc_buffer();
if (textsize == 0) return;
StartDecode(); StartModel();
for (i = 0; i < N - F_ARI; i++) text_buf[i] = ' ';
r = N - F_ARI;
for (count = 0; count < textsize; ) {
c = DecodeChar();
if (c < 256) {
putc_buffer(c); text_buf[r++] = c;
r &= (N - 1); count++;
} else {
i = (r - DecodePosition() - 1) & (N - 1);
j = c - 255 + THRESHOLD;
for (k = 0; k < j; k++) {
c = text_buf[(i + k) & (N - 1)];
putc_buffer(c); text_buf[r++] = c;
r &= (N - 1); count++;
}
}
if (count > printcount) {
printf("%12lu\r", count); printcount += 1024;
}
}
printf("%12lu\n", count);
}
long lzari_compress(unsigned char* tbuffer, unsigned char* fbuffer, long real_size)
{
lz_init();
from_buffer = fbuffer;
to_buffer = tbuffer;
from_max = real_size;
lzari_Encode(real_size);
return(codesize);
}
void lzari_decompress(unsigned char* fbuffer, unsigned char* tbuffer, long comp_size)
{
lz_init();
from_buffer = fbuffer;
from_max = comp_size;
to_buffer = tbuffer;
lzari_Decode();
return;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -