⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kernel_ftc3.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2000  Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel).  All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Cartesian_kernel/include/CGAL/constructions/kernel_ftC3.h $// $Id: kernel_ftC3.h 33100 2006-08-07 11:54:41Z spion $// //// Author(s)     : Herve Bronnimann#ifndef CGAL_CONSTRUCTIONS_KERNEL_FTC3_H#define CGAL_CONSTRUCTIONS_KERNEL_FTC3_H#include <CGAL/determinant.h>CGAL_BEGIN_NAMESPACEtemplate < class FT >CGAL_KERNEL_INLINEvoidmidpointC3( const FT &px, const FT &py, const FT &pz,            const FT &qx, const FT &qy, const FT &qz,            FT &x, FT &y, FT &z){  x = (px + qx) / 2;  y = (py + qy) / 2;  z = (pz + qz) / 2;}template < class FT >voidcentroidC3( const FT &px, const FT &py, const FT &pz,            const FT &qx, const FT &qy, const FT &qz,            const FT &rx, const FT &ry, const FT &rz,            const FT &sx, const FT &sy, const FT &sz,            FT &x, FT &y, FT &z){   x = (px + qx + rx + sx) / 4;   y = (py + qy + ry + sy) / 4;   z = (pz + qz + rz + sz) / 4;}template < class FT >voidcentroidC3( const FT &px, const FT &py, const FT &pz,            const FT &qx, const FT &qy, const FT &qz,            const FT &rx, const FT &ry, const FT &rz,            FT &x, FT &y, FT &z){   x = (px + qx + rx) / 3;   y = (py + qy + ry) / 3;   z = (pz + qz + rz) / 3;}template < class FT >CGAL_KERNEL_MEDIUM_INLINEFTsquared_radiusC3(const FT &px, const FT &py, const FT &pz,                       const FT &qx, const FT &qy, const FT &qz,                       const FT &rx, const FT &ry, const FT &rz,                       const FT &sx, const FT &sy, const FT &sz){  // Translate p to origin to simplify the expression.  FT qpx = qx-px;  FT qpy = qy-py;  FT qpz = qz-pz;  FT qp2 = CGAL_NTS square(qpx) + CGAL_NTS square(qpy) + CGAL_NTS square(qpz);  FT rpx = rx-px;  FT rpy = ry-py;  FT rpz = rz-pz;  FT rp2 = CGAL_NTS square(rpx) + CGAL_NTS square(rpy) + CGAL_NTS square(rpz);  FT spx = sx-px;  FT spy = sy-py;  FT spz = sz-pz;  FT sp2 = CGAL_NTS square(spx) + CGAL_NTS square(spy) + CGAL_NTS square(spz);  FT num_x = det3x3_by_formula(qpy,qpz,qp2,                               rpy,rpz,rp2,                               spy,spz,sp2);  FT num_y = det3x3_by_formula(qpx,qpz,qp2,                               rpx,rpz,rp2,                               spx,spz,sp2);  FT num_z = det3x3_by_formula(qpx,qpy,qp2,                               rpx,rpy,rp2,                               spx,spy,sp2);  FT den   = det3x3_by_formula(qpx,qpy,qpz,                               rpx,rpy,rpz,                               spx,spy,spz);  CGAL_kernel_assertion( ! CGAL_NTS is_zero(den) );  return (CGAL_NTS square(num_x) + CGAL_NTS square(num_y)        + CGAL_NTS square(num_z)) / CGAL_NTS square(2 * den);}template < class FT >CGAL_KERNEL_MEDIUM_INLINEFTsquared_radiusC3(const FT &px, const FT &py, const FT &pz,                       const FT &qx, const FT &qy, const FT &qz,                       const FT &sx, const FT &sy, const FT &sz){  // Translate s to origin to simplify the expression.  FT psx = px-sx;  FT psy = py-sy;  FT psz = pz-sz;  FT ps2 = CGAL_NTS square(psx) + CGAL_NTS square(psy) + CGAL_NTS square(psz);  FT qsx = qx-sx;  FT qsy = qy-sy;  FT qsz = qz-sz;  FT qs2 = CGAL_NTS square(qsx) + CGAL_NTS square(qsy) + CGAL_NTS square(qsz);  FT rsx = psy*qsz-psz*qsy;  FT rsy = psz*qsx-psx*qsz;  FT rsz = psx*qsy-psy*qsx;  FT num_x = ps2 * det2x2_by_formula(qsy,qsz,rsy,rsz)	   - qs2 * det2x2_by_formula(psy,psz,rsy,rsz);  FT num_y = ps2 * det2x2_by_formula(qsx,qsz,rsx,rsz)	   - qs2 * det2x2_by_formula(psx,psz,rsx,rsz);  FT num_z = ps2 * det2x2_by_formula(qsx,qsy,rsx,rsy)	   - qs2 * det2x2_by_formula(psx,psy,rsx,rsy);  FT den   = det3x3_by_formula(psx,psy,psz,                               qsx,qsy,qsz,                               rsx,rsy,rsz);  CGAL_kernel_assertion( den != 0 );  return (CGAL_NTS square(num_x) + CGAL_NTS square(num_y)        + CGAL_NTS square(num_z)) / CGAL_NTS square(2 * den);}template <class FT> CGAL_KERNEL_MEDIUM_INLINEvoid            plane_from_pointsC3(const FT &px, const FT &py, const FT &pz,                    const FT &qx, const FT &qy, const FT &qz,                    const FT &rx, const FT &ry, const FT &rz,		    FT &pa, FT &pb, FT &pc, FT &pd){  FT rpx = px-rx;  FT rpy = py-ry;  FT rpz = pz-rz;  FT rqx = qx-rx;  FT rqy = qy-ry;  FT rqz = qz-rz;  // Cross product rp * rq  pa = rpy*rqz - rqy*rpz;  pb = rpz*rqx - rqz*rpx;  pc = rpx*rqy - rqx*rpy;  pd = - pa*rx - pb*ry - pc*rz;}template <class FT>CGAL_KERNEL_MEDIUM_INLINEvoidplane_from_point_directionC3(const FT &px, const FT &py, const FT &pz,                             const FT &dx, const FT &dy, const FT &dz,                             FT &pa, FT &pb, FT &pc, FT &pd){  // d is the normal direction  pa = dx; pb = dy; pc = dz; pd = -dx*px - dy*py - dz*pz;}template <class FT>CGAL_KERNEL_MEDIUM_INLINEvoidpoint_on_planeC3(const FT &pa, const FT &pb, const FT &pc, const FT &pd,                 FT &x, FT &y, FT &z){  x = y = z = 0;  if (! CGAL_NTS is_zero(pa))      x = -pd/pa;  else if (! CGAL_NTS is_zero(pb)) y = -pd/pb;  else                             z = -pd/pc;}template <class FT>CGAL_KERNEL_MEDIUM_INLINEvoidprojection_planeC3(const FT &pa, const FT &pb, const FT &pc, const FT &pd,                   const FT &px, const FT &py, const FT &pz,                   FT &x, FT &y, FT &z){  // the equation of the plane is Ax+By+Cz+D=0  // the normal direction is (A,B,C)  // the projected point is p-lambda(A,B,C) where  // A(x-lambda A) + B(y-lambda B) + C(z-lambda C) + D = 0  FT num = pa*px + pb*py + pc*pz + pd;  FT den = pa*pa + pb*pb + pc*pc;  FT lambda = num / den;  x = px - lambda * pa;  y = py - lambda * pb;  z = pz - lambda * pc;}template < class FT >CGAL_KERNEL_INLINEFTsquared_distanceC3( const FT &px, const FT &py, const FT &pz,                    const FT &qx, const FT &qy, const FT &qz){  return CGAL_NTS square(px-qx) + CGAL_NTS square(py-qy) +	 CGAL_NTS square(pz-qz);}template < class FT >CGAL_KERNEL_INLINEFTsquared_radiusC3( const FT &px, const FT &py, const FT &pz,                  const FT &qx, const FT &qy, const FT &qz){  return squared_distanceC3(px, py, pz, qx, qy, qz) / 4;}template < class FT >CGAL_KERNEL_INLINEFTscaled_distance_to_directionC3(const FT &pa, const FT &pb, const FT &pc,                               const FT &px, const FT &py, const FT &pz){  return pa*px + pb*py + pc*pz;}template < class FT >CGAL_KERNEL_INLINEFTscaled_distance_to_planeC3(     const FT &pa, const FT &pb, const FT &pc, const FT &pd,     const FT &px, const FT &py, const FT &pz){  return pa*px + pb*py + pc*pz + pd;}template < class FT >CGAL_KERNEL_INLINEFTscaled_distance_to_planeC3(     const FT &ppx, const FT &ppy, const FT &ppz,     const FT &pqx, const FT &pqy, const FT &pqz,     const FT &prx, const FT &pry, const FT &prz,     const FT &px,  const FT &py,  const FT &pz){  return det3x3_by_formula(ppx-px,ppy-py,ppz-pz,                           pqx-px,pqy-py,pqz-pz,                           prx-px,pry-py,prz-pz);}template < class FT >CGAL_KERNEL_INLINEvoidbisector_of_pointsC3(const FT &px, const FT &py, const FT &pz,		     const FT &qx, const FT &qy, const FT &qz,		     FT &a, FT &b, FT &c, FT &d){  a = 2*(px - qx);  b = 2*(py - qy);  c = 2*(pz - qz);  d = CGAL_NTS square(qx) + CGAL_NTS square(qy) + CGAL_NTS square(qz)    - CGAL_NTS square(px) - CGAL_NTS square(py) - CGAL_NTS square(pz);}template < class FT >voidbisector_of_planesC3(const FT &pa, const FT &pb, const FT &pc, const FT &pd,		     const FT &qa, const FT &qb, const FT &qc, const FT &qd,		     FT &a, FT &b, FT &c, FT &d){  // We normalize the equations of the 2 planes, and we then add them.  FT n1 = CGAL_NTS sqrt(CGAL_NTS square(pa) + CGAL_NTS square(pb) +                        CGAL_NTS square(pc));  FT n2 = CGAL_NTS sqrt(CGAL_NTS square(qa) + CGAL_NTS square(qb) +                        CGAL_NTS square(qc));  a = n2 * pa + n1 * qa;  b = n2 * pb + n1 * qb;  c = n2 * pc + n1 * qc;  d = n2 * pd + n1 * qd;  // Care must be taken for the case when this produces a degenerate line.  if (a == 0 && b == 0 && c == 0) {    a = n2 * pa - n1 * qa;    b = n2 * pb - n1 * qb;    c = n2 * pc - n1 * qc;    d = n2 * pd - n1 * qd;  }}template < class FT >FTsquared_areaC3(const FT &px, const FT &py, const FT &pz,	       const FT &qx, const FT &qy, const FT &qz,	       const FT &rx, const FT &ry, const FT &rz){    // Compute vectors pq and pr, then the cross product,    // then 1/4 of its squared length.    FT dqx = qx-px;    FT dqy = qy-py;    FT dqz = qz-pz;    FT drx = rx-px;    FT dry = ry-py;    FT drz = rz-pz;    FT vx = dqy*drz-dqz*dry;    FT vy = dqz*drx-dqx*drz;    FT vz = dqx*dry-dqy*drx;    return (CGAL_NTS square(vx) + CGAL_NTS square(vy) + CGAL_NTS square(vz))/4;}CGAL_END_NAMESPACE#endif // CGAL_CONSTRUCTIONS_KERNEL_FTC3_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -