📄 kernel_ftc3.h
字号:
// Copyright (c) 2000 Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel). All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Cartesian_kernel/include/CGAL/constructions/kernel_ftC3.h $// $Id: kernel_ftC3.h 33100 2006-08-07 11:54:41Z spion $// //// Author(s) : Herve Bronnimann#ifndef CGAL_CONSTRUCTIONS_KERNEL_FTC3_H#define CGAL_CONSTRUCTIONS_KERNEL_FTC3_H#include <CGAL/determinant.h>CGAL_BEGIN_NAMESPACEtemplate < class FT >CGAL_KERNEL_INLINEvoidmidpointC3( const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, FT &x, FT &y, FT &z){ x = (px + qx) / 2; y = (py + qy) / 2; z = (pz + qz) / 2;}template < class FT >voidcentroidC3( const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, const FT &rx, const FT &ry, const FT &rz, const FT &sx, const FT &sy, const FT &sz, FT &x, FT &y, FT &z){ x = (px + qx + rx + sx) / 4; y = (py + qy + ry + sy) / 4; z = (pz + qz + rz + sz) / 4;}template < class FT >voidcentroidC3( const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, const FT &rx, const FT &ry, const FT &rz, FT &x, FT &y, FT &z){ x = (px + qx + rx) / 3; y = (py + qy + ry) / 3; z = (pz + qz + rz) / 3;}template < class FT >CGAL_KERNEL_MEDIUM_INLINEFTsquared_radiusC3(const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, const FT &rx, const FT &ry, const FT &rz, const FT &sx, const FT &sy, const FT &sz){ // Translate p to origin to simplify the expression. FT qpx = qx-px; FT qpy = qy-py; FT qpz = qz-pz; FT qp2 = CGAL_NTS square(qpx) + CGAL_NTS square(qpy) + CGAL_NTS square(qpz); FT rpx = rx-px; FT rpy = ry-py; FT rpz = rz-pz; FT rp2 = CGAL_NTS square(rpx) + CGAL_NTS square(rpy) + CGAL_NTS square(rpz); FT spx = sx-px; FT spy = sy-py; FT spz = sz-pz; FT sp2 = CGAL_NTS square(spx) + CGAL_NTS square(spy) + CGAL_NTS square(spz); FT num_x = det3x3_by_formula(qpy,qpz,qp2, rpy,rpz,rp2, spy,spz,sp2); FT num_y = det3x3_by_formula(qpx,qpz,qp2, rpx,rpz,rp2, spx,spz,sp2); FT num_z = det3x3_by_formula(qpx,qpy,qp2, rpx,rpy,rp2, spx,spy,sp2); FT den = det3x3_by_formula(qpx,qpy,qpz, rpx,rpy,rpz, spx,spy,spz); CGAL_kernel_assertion( ! CGAL_NTS is_zero(den) ); return (CGAL_NTS square(num_x) + CGAL_NTS square(num_y) + CGAL_NTS square(num_z)) / CGAL_NTS square(2 * den);}template < class FT >CGAL_KERNEL_MEDIUM_INLINEFTsquared_radiusC3(const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, const FT &sx, const FT &sy, const FT &sz){ // Translate s to origin to simplify the expression. FT psx = px-sx; FT psy = py-sy; FT psz = pz-sz; FT ps2 = CGAL_NTS square(psx) + CGAL_NTS square(psy) + CGAL_NTS square(psz); FT qsx = qx-sx; FT qsy = qy-sy; FT qsz = qz-sz; FT qs2 = CGAL_NTS square(qsx) + CGAL_NTS square(qsy) + CGAL_NTS square(qsz); FT rsx = psy*qsz-psz*qsy; FT rsy = psz*qsx-psx*qsz; FT rsz = psx*qsy-psy*qsx; FT num_x = ps2 * det2x2_by_formula(qsy,qsz,rsy,rsz) - qs2 * det2x2_by_formula(psy,psz,rsy,rsz); FT num_y = ps2 * det2x2_by_formula(qsx,qsz,rsx,rsz) - qs2 * det2x2_by_formula(psx,psz,rsx,rsz); FT num_z = ps2 * det2x2_by_formula(qsx,qsy,rsx,rsy) - qs2 * det2x2_by_formula(psx,psy,rsx,rsy); FT den = det3x3_by_formula(psx,psy,psz, qsx,qsy,qsz, rsx,rsy,rsz); CGAL_kernel_assertion( den != 0 ); return (CGAL_NTS square(num_x) + CGAL_NTS square(num_y) + CGAL_NTS square(num_z)) / CGAL_NTS square(2 * den);}template <class FT> CGAL_KERNEL_MEDIUM_INLINEvoid plane_from_pointsC3(const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, const FT &rx, const FT &ry, const FT &rz, FT &pa, FT &pb, FT &pc, FT &pd){ FT rpx = px-rx; FT rpy = py-ry; FT rpz = pz-rz; FT rqx = qx-rx; FT rqy = qy-ry; FT rqz = qz-rz; // Cross product rp * rq pa = rpy*rqz - rqy*rpz; pb = rpz*rqx - rqz*rpx; pc = rpx*rqy - rqx*rpy; pd = - pa*rx - pb*ry - pc*rz;}template <class FT>CGAL_KERNEL_MEDIUM_INLINEvoidplane_from_point_directionC3(const FT &px, const FT &py, const FT &pz, const FT &dx, const FT &dy, const FT &dz, FT &pa, FT &pb, FT &pc, FT &pd){ // d is the normal direction pa = dx; pb = dy; pc = dz; pd = -dx*px - dy*py - dz*pz;}template <class FT>CGAL_KERNEL_MEDIUM_INLINEvoidpoint_on_planeC3(const FT &pa, const FT &pb, const FT &pc, const FT &pd, FT &x, FT &y, FT &z){ x = y = z = 0; if (! CGAL_NTS is_zero(pa)) x = -pd/pa; else if (! CGAL_NTS is_zero(pb)) y = -pd/pb; else z = -pd/pc;}template <class FT>CGAL_KERNEL_MEDIUM_INLINEvoidprojection_planeC3(const FT &pa, const FT &pb, const FT &pc, const FT &pd, const FT &px, const FT &py, const FT &pz, FT &x, FT &y, FT &z){ // the equation of the plane is Ax+By+Cz+D=0 // the normal direction is (A,B,C) // the projected point is p-lambda(A,B,C) where // A(x-lambda A) + B(y-lambda B) + C(z-lambda C) + D = 0 FT num = pa*px + pb*py + pc*pz + pd; FT den = pa*pa + pb*pb + pc*pc; FT lambda = num / den; x = px - lambda * pa; y = py - lambda * pb; z = pz - lambda * pc;}template < class FT >CGAL_KERNEL_INLINEFTsquared_distanceC3( const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz){ return CGAL_NTS square(px-qx) + CGAL_NTS square(py-qy) + CGAL_NTS square(pz-qz);}template < class FT >CGAL_KERNEL_INLINEFTsquared_radiusC3( const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz){ return squared_distanceC3(px, py, pz, qx, qy, qz) / 4;}template < class FT >CGAL_KERNEL_INLINEFTscaled_distance_to_directionC3(const FT &pa, const FT &pb, const FT &pc, const FT &px, const FT &py, const FT &pz){ return pa*px + pb*py + pc*pz;}template < class FT >CGAL_KERNEL_INLINEFTscaled_distance_to_planeC3( const FT &pa, const FT &pb, const FT &pc, const FT &pd, const FT &px, const FT &py, const FT &pz){ return pa*px + pb*py + pc*pz + pd;}template < class FT >CGAL_KERNEL_INLINEFTscaled_distance_to_planeC3( const FT &ppx, const FT &ppy, const FT &ppz, const FT &pqx, const FT &pqy, const FT &pqz, const FT &prx, const FT &pry, const FT &prz, const FT &px, const FT &py, const FT &pz){ return det3x3_by_formula(ppx-px,ppy-py,ppz-pz, pqx-px,pqy-py,pqz-pz, prx-px,pry-py,prz-pz);}template < class FT >CGAL_KERNEL_INLINEvoidbisector_of_pointsC3(const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, FT &a, FT &b, FT &c, FT &d){ a = 2*(px - qx); b = 2*(py - qy); c = 2*(pz - qz); d = CGAL_NTS square(qx) + CGAL_NTS square(qy) + CGAL_NTS square(qz) - CGAL_NTS square(px) - CGAL_NTS square(py) - CGAL_NTS square(pz);}template < class FT >voidbisector_of_planesC3(const FT &pa, const FT &pb, const FT &pc, const FT &pd, const FT &qa, const FT &qb, const FT &qc, const FT &qd, FT &a, FT &b, FT &c, FT &d){ // We normalize the equations of the 2 planes, and we then add them. FT n1 = CGAL_NTS sqrt(CGAL_NTS square(pa) + CGAL_NTS square(pb) + CGAL_NTS square(pc)); FT n2 = CGAL_NTS sqrt(CGAL_NTS square(qa) + CGAL_NTS square(qb) + CGAL_NTS square(qc)); a = n2 * pa + n1 * qa; b = n2 * pb + n1 * qb; c = n2 * pc + n1 * qc; d = n2 * pd + n1 * qd; // Care must be taken for the case when this produces a degenerate line. if (a == 0 && b == 0 && c == 0) { a = n2 * pa - n1 * qa; b = n2 * pb - n1 * qb; c = n2 * pc - n1 * qc; d = n2 * pd - n1 * qd; }}template < class FT >FTsquared_areaC3(const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, const FT &rx, const FT &ry, const FT &rz){ // Compute vectors pq and pr, then the cross product, // then 1/4 of its squared length. FT dqx = qx-px; FT dqy = qy-py; FT dqz = qz-pz; FT drx = rx-px; FT dry = ry-py; FT drz = rz-pz; FT vx = dqy*drz-dqz*dry; FT vy = dqz*drx-dqx*drz; FT vz = dqx*dry-dqy*drx; return (CGAL_NTS square(vx) + CGAL_NTS square(vy) + CGAL_NTS square(vz))/4;}CGAL_END_NAMESPACE#endif // CGAL_CONSTRUCTIONS_KERNEL_FTC3_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -