⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 conic_intersections_2.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2005  Tel-Aviv University (Israel).// All rights reserved.//// This file is part of CGAL (www.cgal.org); you may redistribute it under// the terms of the Q Public License version 1.0.// See the file LICENSE.QPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Arrangement_2/include/CGAL/Arr_traits_2/Conic_intersections_2.h $// $Id: Conic_intersections_2.h 28567 2006-02-16 14:30:13Z lsaboret $// //// Author(s)     : Ron Wein <wein@post.tau.ac.il>#ifndef CGAL_CONIC_INTERSECTIONS_2_H#define CGAL_CONIC_INTERSECTIONS_2_H/*! \file * Implementation of functions related to the intersection of conics curves. */CGAL_BEGIN_NAMESPACE/*! * Compute the roots of the resultants of the two bivariate polynomials: *   C1:  r1*x^2 + s1*y^2 + t1*xy + u1*x + v1*y + w1 = 0 *   C2:  r2*x^2 + s2*y^2 + t2*xy + u2*x + v2*y + w2 = 0 * \param deg1 The degree of the first curve. * \param deg2 The degree of the second curve. * \param xs Output: The real-valued roots of the polynomial, sorted in an *                   ascending order. * \pre xs must be a vector of size 4. * \return The number of distinct roots found. */template <class Nt_traits>int _compute_resultant_roots (Nt_traits& nt_traits,			      const typename Nt_traits::Integer& r1,			      const typename Nt_traits::Integer& s1,			      const typename Nt_traits::Integer& t1,			      const typename Nt_traits::Integer& u1,			      const typename Nt_traits::Integer& v1,			      const typename Nt_traits::Integer& w1,			      const int& deg1,			      const typename Nt_traits::Integer& r2,			      const typename Nt_traits::Integer& s2,			      const typename Nt_traits::Integer& t2,			      const typename Nt_traits::Integer& u2,			      const typename Nt_traits::Integer& v2,			      const typename Nt_traits::Integer& w2,			      const int& deg2,			      typename Nt_traits::Algebraic *xs){   if (deg1 == 2 && deg2 == 1)  {    // If necessary, swap roles between the two curves, so that the first    // curve always has the minimal degree.    return (_compute_resultant_roots (nt_traits,				      r2, s2, t2, u2, v2, w2, 				      deg2,				      r1, s1, t1, u1, v1, w1, 				      deg1,				      xs));  }    // Act according to the degree of the first conic curve.  const typename Nt_traits::Integer  _two = 2;  typename Nt_traits::Integer        c[5];  unsigned int                       degree = 4;  typename Nt_traits::Algebraic     *xs_end;  if (deg1 == 1)  {    // The first curve has no quadratic coefficients, and represents a line.    if (CGAL::sign (v1) == ZERO)    {      // The first line is u1*x + w1 = 0, therefore:      xs[0] = nt_traits.convert(-w1) / nt_traits.convert(u1);      return (1);    }        // We can write the first curve as: y = -(u1*x + w1) / v1.    if (deg2 == 1)    {      // The second curve is also a line. We therefore get the linear      // equation c[1]*x + c[0] = 0:      c[1] = v1*u2 - u1*v2;      c[0] = v1*w2 - w1*v2;      if (CGAL::sign (c[1]) == ZERO)	// The two lines are parallel:	return (0);      xs[0] =  nt_traits.convert(-c[0]) /  nt_traits.convert(c[1]);      return (1);    }    // We substitute this expression into the equation of the second    // conic, and get the quadratic equation c[2]*x^2 + c[1]*x + c[0] = 0:    c[2] = u1*u1*s2 - u1*v1*t2 + v1*v1*r2;    c[1] = _two*u1*w1*s2 - u1*v1*v2 - v1*w1*t2 + v1*v1*u2;    c[0] = w1*w1*s2 - v1*w1*v2 + v1*v1*w2;        xs_end = nt_traits.solve_quadratic_equation (c[2], c[1], c[0],						 xs);    return (xs_end - xs);  }  // At this stage, both curves have degree 2. We obtain a qaurtic polynomial  // whose roots are the x-coordinates of the intersection points.  if (CGAL::sign (s1) == ZERO && CGAL::sign (s2) == ZERO)  {    // If both s1 and s2 are zero, we can write the two curves as:    //   C1: (t1*x + v1)*y + (r1*x^2 + u1*x + w1) = 0    //   C2: (t2*x + v2)*y + (r2*x^2 + u2*x + w2) = 0    // By writing the resultant of these two polynomials we get a cubic    // polynomial, whose coefficients are given by:    c[3] = r2*t1 - r1*t2;    c[2] = t1*u2 - t2*u1 + r2*v1 - r1*v2;    c[1] = t1*w2 - t2*w1 + u2*v1 - u1*v2;    c[0] = v1*w2 - v2*w1;        degree = 3;  }  else  {    // We can write the two curves as:    //   C1: (s1)*y^2 + (t1*x + v1)*y + (r1*x^2 + u1*x + w1) = 0    //   C2: (s2)*y^2 + (t2*x + v2)*y + (r2*x^2 + u2*x + w2) = 0    // By writing the resultant of these two polynomials we get a quartic    // polynomial, whose coefficients are given by:    c[4] = -_two*s1*s2*r1*r2 + s1*t2*t2*r1 - s1*t2*t1*r2 +      s1*s1*r2*r2 - s2*t1*r1*t2 + s2*t1*t1*r2 + s2*s2*r1*r1;    c[3] = -t2*r1*v1*s2 - u2*t1*t2*s1 - v2*r1*t1*s2 -      r2*t1*v2*s1 - _two*s1*s2*r1*u2 - t2*u1*t1*s2 + u2*t1*t1*s2 -      r2*v1*t2*s1 + u1*t2*t2*s1 + _two*v2*r1*t2*s1 + _two*u2*r2*s1*s1 +       _two*r2*v1*t1*s2 + _two*u1*r1*s2*s2 - _two*s1*s2*u1*r2;        c[2] = -r2*v1*v2*s1 + u2*u2*s1*s1 + _two*w2*r2*s1*s1 +      _two*u2*v1*t1*s2 - u2*v1*t2*s1 + w2*t1*t1*s2 - _two*s1*s2*u1*u2 -       w2*t1*t2*s1 + v2*v2*r1*s1 + u1*u1*s2*s2 - v2*r1*v1*s2 +      _two*w1*r1*s2*s2 - u2*t1*v2*s1 - t2*u1*v1*s2 - _two*s1*s2*r1*w2 -      _two*s1*s2*w1*r2 + r2*v1*v1*s2 + w1*t2*t2*s1 - v2*u1*t1*s2 -      t2*w1*t1*s2 + _two*v2*u1*t2*s1;    c[1] = _two*w2*u2*s1*s1 + _two*w2*v1*t1*s2 - w2*v1*t2*s1 +      _two*v2*w1*t2*s1 + _two*w1*u1*s2*s2 - v2*u1*v1*s2 - _two*s1*s2*u1*w2 -      v2*w1*t1*s2 + u2*v1*v1*s2 - t2*w1*v1*s2 - w2*t1*v2*s1 +       v2*v2*u1*s1 - u2*v1*v2*s1 - _two*s1*s2*w1*u2;        c[0] = s2*v1*v1*w2 - s1*v2*v1*w2 - s2*v1*w1*v2 + s2*s2*w1*w1 -      _two*s1*s2*w1*w2 + s1*w1*v2*v2 + s1*s1*w2*w2;    degree = 4;  }    // Compute the roots of the resultant polynomial.  typename Nt_traits::Polynomial  poly =                                     nt_traits.construct_polynomial (c, degree);  xs_end = nt_traits.compute_polynomial_roots (poly,					       xs);  return (xs_end - xs);}/*! * Compute the roots of the resultants of the two bivariate polynomials: *   C1:  r*x^2 + s*y^2 + t*xy + u*x + v*y + w = 0 *   C2:  A*x + B*y + C = 0 * \param deg1 The degree of the first curve. * \param xs Output: The real-valued roots of the polynomial, sorted in an *                   ascending order. * \pre xs must be a vector of size 4. * \return The number of distinct roots found. */template <class Nt_traits>int _compute_resultant_roots (Nt_traits& nt_traits,			      const typename Nt_traits::Algebraic& r,			      const typename Nt_traits::Algebraic& s,			      const typename Nt_traits::Algebraic& t,			      const typename Nt_traits::Algebraic& u,			      const typename Nt_traits::Algebraic& v,			      const typename Nt_traits::Algebraic& w,			      const int& deg1,			      const typename Nt_traits::Algebraic& A,			      const typename Nt_traits::Algebraic& B,			      const typename Nt_traits::Algebraic& C,			      typename Nt_traits::Algebraic *xs){  if (deg1 == 1)  {    // We should actually compute the intersection of two line:    // (u*x + v*y + w = 0) and (A*x + B*y + C = 0):    const typename Nt_traits::Algebraic   denom = A*v - B*u;    if (CGAL::sign (denom) == CGAL::ZERO)      // The two lines are parallel and do not intersect.      return (0);    xs[0] = (B*w - C*v) / denom;    return (1);  }  if (CGAL::sign (B) == CGAL::ZERO)  {    // The first line is A*x + C = 0, therefore:    xs[0] = -C / A;    return (1);  }  // We can write the first curve as: y = -(A*x + C) / B.  // We substitute this expression into the equation of the conic, and get  // the quadratic equation c[2]*x^2 + c[1]*x + c[0] = 0:  const typename Nt_traits::Algebraic  _two = 2;  typename Nt_traits::Algebraic        c[3];  typename Nt_traits::Algebraic       *xs_end;  c[2] = A*A*s - A*B*t + B*B*r;  c[1] = _two*A*C*s - A*B*v - B*C*t + B*B*u;  c[0] = C*C*s - B*C*v + B*B*w;  xs_end = nt_traits.solve_quadratic_equation (c[2], c[1], c[0],                                               xs);  return (xs_end - xs);}CGAL_END_NAMESPACE#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -