⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 aff_transformationhd.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2000,2001  Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel).  All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Kernel_d/include/CGAL/Kernel_d/Aff_transformationHd.h $// $Id: Aff_transformationHd.h 28567 2006-02-16 14:30:13Z lsaboret $// //// Author(s)     : Michael Seel#ifndef CGAL_AFF_TRANSFORMATIONHD_H#define CGAL_AFF_TRANSFORMATIONHD_H#ifndef NOCGALINCL#include <CGAL/basic.h>#include <CGAL/aff_transformation_tags.h>#include <CGAL/rational_rotation.h>#include <CGAL/Handle_for.h>#endifCGAL_BEGIN_NAMESPACEtemplate <class RT, class LA > class Aff_transformationHd;template <class RT, class LA > class Aff_transformationHd_rep;template <class RT, class LA>class Aff_transformationHd_rep {  friend class Aff_transformationHd<RT,LA>;  typedef typename LA::Matrix Matrix;  Matrix M_;public:  Aff_transformationHd_rep(int d) : M_(d+1) {}  Aff_transformationHd_rep(const Matrix& M_init) : M_(M_init) {}  ~Aff_transformationHd_rep() {}}; /*{\Moptions outfile=Aff_transformation_d.man}*/ /*{\Manpage{Aff_transformation_d}{R}{Affine Transformations}{t}}*//*{\Msubst Hd<RT,LA>#_d<R>Aff_transformationHd#Aff_transformation_dQuotient<RT>#FT}*/template <class _RT, class _LA>class Aff_transformationHd :   public Handle_for< Aff_transformationHd_rep<_RT,_LA> > {   typedef Aff_transformationHd_rep<_RT,_LA> Rep;  typedef Handle_for<Rep> Base;  typedef Aff_transformationHd<_RT,_LA> Self;  using Base::ptr;/*{\Mdefinition An instance of the data type |\Mname| is an affine transformation of$d$-dimensional space. It is specified by a square matrix$M$ of dimension $d + 1$. All entries in the last row of |M| exceptthe diagonal entry must be zero; the diagonal entry must be non-zero.A point $p$ with homogeneous coordinates $(p[0], \ldots, p[d])$ can betransformed into the point |p.transform(A)|, where |A| is an affinetransformation created from |M| by the constructors below. }*/public: /*{\Mtypes 4}*/typedef _RT RT;/*{\Mtypemember the ring type.}*/typedef Quotient<_RT> FT;/*{\Mtypemember the field type.}*/typedef _LA LA;/*{\Mtypemember the linear algebra layer.}*/typedef typename _LA::Matrix Matrix;/*{\Mtypemember the matrix type.}*/typedef typename _LA::Vector Vector;/*{\Mcreation 3}*/Aff_transformationHd(int d = 0) : Base( Rep(d) ) {}/*{\Mcreate introduces a transformation in $d$-dimensional space.}*/Aff_transformationHd(int d, Identity_transformation) : Base( Rep(d) )/*{\Mcreate introduces the identity transformation in $d$-dimensional     space.}*/{ for (int i = 0; i <= d; ++i) ptr()->M_(i,i) = RT(1); }Aff_transformationHd(const Matrix& M) : Base( Rep(M) )/*{\Mcreate introduces the transformation of $d$ - space specified bymatrix $M$. \precond |M| is a square matrix of dimension $d + 1$. }*/{ CGAL_assertion_msg((M.row_dimension()==M.column_dimension()),    "Aff_transformationHd::\     construction: initialization matrix is not quadratic.");}template <typename Forward_iterator>Aff_transformationHd(Scaling, Forward_iterator start, Forward_iterator end) :  Base( Rep(std::distance(start,end)-1) )/*{\Mcreate introduces the transformation of $d$-space specified by adiagonal matrix with entries |set [start,end)| on the diagonal (a scaling of the space). \precond |set [start,end)| is a vector of dimension $d+1$.}*/{ int i=0; while (start != end) { ptr()->M_(i,i) = *start++;++i; } }Aff_transformationHd(Translation, const VectorHd<RT,LA>& v) :  Base( Rep(v.dimension()) )/*{\Mcreate introduces the translation by vector $v$.}*/ { int d = v.dimension();  for (int i = 0; i < d; ++i) {    ptr()->M_(i,i) = v.homogeneous(d);    ptr()->M_(i,d) = v.homogeneous(i);  }  ptr()->M_(d,d) = v.homogeneous(d);}Aff_transformationHd(int d, Scaling, const RT& num, const RT& den)   : Base( Rep(d) ) /*{\Mcreate returns a scaling by a scale factor |num/den|.}*/{ Matrix& M = ptr()->M_;  for (int i = 0; i < d; ++i) M(i,i) = num;  M(d,d) = den;}Aff_transformationHd(int d, Rotation,    const RT& sin_num, const RT& cos_num, const RT& den,   int e1 = 0, int e2 = 1) : Base( Rep(d) ) /*{\Mcreate returns a planar rotation with sine and cosine values|sin_num/den| and |cos_num/den| in the plane spanned bythe base vectors $b_{e1}$ and $b_{e2}$ in $d$-space. Thusthe default use delivers a planar rotation in the $x$-$y$plane. \precond $|sin_num|^2 + |cos_num|^2 = |den|^2$and $0 \leq e_1 < e_2 < d$}*/{  CGAL_assertion_msg((sin_num*sin_num + cos_num*cos_num == den*den),    "planar_rotation: rotation parameters disobey precondition.");  CGAL_assertion_msg((0<=e1 && e1<=e2 && e2<d),    "planar_rotation: base vector indices wrong.");  Matrix& M = ptr()->M_;  for (int i=0; i<d; i++) M(i,i) = 1;  M(e1,e1) = cos_num; M(e1,e2) = -sin_num;  M(e2,e1) = sin_num; M(e2,e2) = cos_num;  M(d,d) = den;}Aff_transformationHd(int d, Rotation, const DirectionHd<RT,LA>& dir,   const RT& eps_num, const RT& eps_den, int e1 = 0, int e2 = 1)/*{\Mcreate returns a planar rotation within the plane spanned bythe base vectors $b_{e1}$ and $b_{e2}$ in $d$-space.  The rotationparameters are given by the $2$-dimensional direction |dir|, such thatthe difference between the sines and cosines of the rotation given by|dir| and the approximated rotation are at most |num/den| each.\\\precond |dir.dimension()==2|, |!dir.is_degenerate()| and |num < den|is positive and $0 \leq e_1 < e_2 < d$ }*/  : Base( Rep(d) )  {  CGAL_assertion(dir.dimension()==2);  Matrix& M = ptr()->M_;  for (int i=0; i<d; i++) M(i,i) = RT(1);  RT sin_num, cos_num, denom;  rational_rotation_approximation(dir.dx(), dir.dy(),                                  sin_num, cos_num, denom,                                  eps_num, eps_den);  M(e1,e1) = cos_num; M(e1,e2) = -sin_num;  M(e2,e1) = sin_num; M(e2,e2) = cos_num;  M(d,d) = denom;}/*{\Moperations 5 3}*/int dimension() const { return ptr()->M_.row_dimension()-1; }/*{\Mop the dimension of the underlying space }*/const Matrix& matrix() const { return ptr()->M_; }/*{\Mop returns the transformation matrix }*/Vector operator()(const Vector& iv) const// transforms the ivector by a matrix multiplication{ return matrix()*iv; }bool is_odd() const/*{\Mop returns true iff |\Mvar| is odd.}*/{ return LA::sign_of_determinant(matrix())<0; }Aff_transformationHd<RT,LA> inverse() const/*{\Mop returns the inverse transformation.\precond |\Mvar.matrix()| is invertible.}*/{ Aff_transformationHd<RT,LA> Inv; RT D;   Vector dummy;  if ( !LA::inverse(matrix(),Inv.ptr()->M_,D,dummy) )   CGAL_assertion_msg(0,"Aff_transformationHd::inverse: not invertible.");  if ( D < 0 ) Inv.ptr()->M_ = -Inv.ptr()->M_;  return Inv;}  Aff_transformationHd<RT,LA>  operator*(const Aff_transformationHd<RT,LA>& s) const/*{\Mbinop composition of transformations. Note that transformationsare not necessarily commutative. |t*s| is the transformationwhich transforms first by |t| and then by |s|.}*/{ CGAL_assertion_msg((dimension()==s.dimension()),  "Aff_transformationHd::operator*: dimensions disagree.");  return Aff_transformationHd<RT,LA>(matrix()*s.matrix()); }bool operator==(const Aff_transformationHd<RT,LA>& a1) const{ if ( this->identical(a1) ) return true;  return ( matrix() == a1.matrix() );}bool operator!=(const Aff_transformationHd<RT,LA>& a1) const{ return !operator==(a1); }}; // Aff_transformationHdtemplate <class RT, class LA>std::ostream& operator<<(  std::ostream& os, const Aff_transformationHd<RT,LA>& t) { os << t.matrix(); return os; }template <class RT, class LA>std::istream& operator>>(  std::istream& is, Aff_transformationHd<RT,LA>& t){ typename LA::Matrix M(t.dimension());  is >> M; t = Aff_transformationHd<RT,LA>(M);   return is;}/*{\Mimplementation Affine Transformations are implemented by matrices of integers as anitem type.  All operations like creation, initialization, input andoutput on a transformation $t$ take time $O(|t.dimension()|^2)$. |dimension()|takes constant time.  The operations for inversion and compositionhave the cubic costs of the used matrix operations. The spacerequirement is $O(|t.dimension()|^2)$. }*/// ----------------------------- end of file ----------------------------CGAL_END_NAMESPACE#endif // CGAL_AFF_TRANSFORMATIONHD_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -