⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pointhd.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2000,2001  Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel).  All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Kernel_d/include/CGAL/Kernel_d/PointHd.h $// $Id: PointHd.h 28567 2006-02-16 14:30:13Z lsaboret $// //// Author(s)     : Michael Seel#ifndef CGAL_POINTHDXXX_H#define CGAL_POINTHDXXX_H #ifndef NOCGALINCL#include <CGAL/basic.h>#include <CGAL/Origin.h>#include <CGAL/Quotient.h>#endif#include <CGAL/Kernel_d/Tuple_d.h>#include <CGAL/Kernel_d/VectorHd.h> #include <CGAL/Kernel_d/Aff_transformationHd.h>CGAL_BEGIN_NAMESPACE#define PointHd PointHd2template <class RT, class LA> class PointHd;template <class RT, class LA>std::istream& operator>>(std::istream&, PointHd<RT,LA>&);template <class RT, class LA>std::ostream& operator<<(std::ostream&, const PointHd<RT,LA>&);/*{\Moptions outfile=Point_d.man}*//*{\Manpage {Point_d} {R} {Points in d-space} {p}}*//*{\Msubst Hd<RT,LA>#_d<R>PointHd#Point_dQuotient<RT>#FT}*/template <class _RT, class _LA > class PointHd : public Handle_for< Tuple_d<_RT,_LA> > {   typedef Tuple_d<_RT,_LA> Tuple;  typedef Handle_for<Tuple> Base;  typedef PointHd<_RT,_LA> Self;  using Base::ptr;/*{\Mdefinition An instance of data type |\Mname| is a point of Euclidean space indimension $d$. A point $p = (p_0,\ldots,p_{ d - 1 })$ in$d$-dimensional space can be represented by homogeneous coordinates$(h_0,h_1,\ldots,h_d)$ of number type |RT| such that $p_i = h_i/h_d$,which is of type |FT|. The homogenizing coordinate $h_d$ is positive.We call $p_i$, $0 \leq i < d$ the $i$-th Cartesian coordinate and$h_i$, $0 \le i \le d$, the $i$-th homogeneous coordinate. We call $d$the dimension of the point.}*/const typename _LA::Vector& vector_rep() const { return ptr()->v; }_RT& entry(int i) { return ptr()->v[i]; }const _RT& entry(int i) const { return ptr()->v[i]; }void invert_rep() { ptr()->invert(); }PointHd(const Base& b) : Base(b) {}public: /*{\Mtypes 4}*/typedef _RT RT;/*{\Mtypemember the ring type.}*/typedef Quotient<_RT> FT;/*{\Mtypemember the field type.}*/typedef _LA LA;/*{\Mtypemember the linear algebra layer.}*/typedef typename Tuple::Cartesian_const_iterator Cartesian_const_iterator;/*{\Mtypemember a read-only iterator for the cartesian coordinates.}*/typedef typename Tuple::const_iterator Homogeneous_const_iterator;/*{\Mtypemember a read-only iterator for the homogeneous coordinates.}*/friend class VectorHd<RT,LA>;friend class HyperplaneHd<RT,LA>;/*{\Mcreation 4}*/PointHd(int d = 0) /*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in $d$-dimensional space.}*/  : Base( Tuple(d+1) ) { if ( d > 0 ) entry(d) = 1; }PointHd(int d, const Origin&) /*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in $d$-dimensional space, initialized to the origin.}*/  : Base( Tuple(d+1) ){ entry(d) = 1; }template <class InputIterator>PointHd(int d, InputIterator first, InputIterator last) /*{\Mcreate introduces a variable |\Mvar| of type |\Mname| indimension |d|.  If |size [first,last) == d| this creates a point withCartesian coordinates |set [first,last)|. If |size [first,last) ==p+1| the range specifies the homogeneous coordinates $|H = set[first,last)| = (\pm h_0, \pm h_1, \ldots, \pm h_d)$ where the signchosen is the sign of $h_d$.  \precond |d| is nonnegative,|[first,last)| has |d| or |d+1| elements where the last has to benon-zero, and the value type of |InputIterator| is |RT|.}*/  : Base( Tuple(d+1,first,last) ){ RT D = entry(d);  if ( D == RT(0) ) entry(d) = 1;  if ( D < RT(0) ) invert_rep();}template <class InputIterator>PointHd (int d, InputIterator first, InputIterator last,          const RT& D) /*{\Mcreate introduces a variable |\Mvar| of type |\Mname| indimension |d| initialized to the point with homogeneous coordinates asdefined by |H = set [first,last)| and |D|: $(\pm |H[0]|, \pm|H[1]|,\ldots, \pm|H[d-1]|, \pm|D|)$. The sign chosen is the sign of$D$. \precond |D| is non-zero, the iterator range defines a $d$-tupleof |RT|, and the value type of |InputIterator| is |RT|. }*/  : Base( Tuple(d+1,first,last,D) ){ CGAL_assertion_msg(D!=RT(0),"PointHd::constructor: D must be nonzero.");  if (D < RT(0)) invert_rep();}PointHd(int x, int y, int w = 1) : Base( Tuple((RT)x,(RT)y,(RT)w) ){ CGAL_assertion_msg((w != 0),"PointHd::construction: w == 0.");  if (w < 0) invert_rep();}PointHd(const RT& x, const RT& y, const RT& w = 1)/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in $2$-dimensional space.}*/   : Base( Tuple(x,y,w,MatchHelper()) ){ CGAL_assertion_msg((w!=0),"PointHd::construction: w == 0.");  if (w < 0) invert_rep();}PointHd(int x, int y, int z, int w) :   Base( Tuple((RT)x,(RT)y,(RT)z,(RT)w) ){ CGAL_assertion_msg((w!=0),"PointHd::construction: w == 0.");  if (w < 0) invert_rep();}PointHd(const RT& x, const RT& y, const RT& z, const RT& w) /*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in $3$-dimensional space.}*/  : Base( Tuple(x,y,z,w) ){ CGAL_assertion_msg((w!=0),"PointHd::construction: w == 0.");  if (w < 0) invert_rep();}PointHd(const PointHd<RT,LA>& p) : Base(p) {}~PointHd() {}     /*{\Moperations 4 3}*/int dimension() const  { return ptr()->size()-1; }/*{\Mop  returns the dimension of |\Mvar|. }*/Quotient<RT> cartesian(int i) const/*{\Mop returns the $i$-th Cartesian coordinate of |\Mvar|.    \precond $0 \leq i < d$.}*/{ CGAL_assertion_msg((0<=i && i<dimension()),"PointHd::cartesian():\  index out of range.");  return Quotient<RT>(entry(i), entry(dimension())); }Quotient<RT> operator[](int i) const  { return cartesian(i); }/*{\Marrop returns the $i$-th Cartesian coordinate of |\Mvar|.   \precond $0 \leq i < d$.}*/RT homogeneous(int i) const /*{\Mop  returns the $i$-th homogeneous coordinate of |\Mvar|.   \precond $0 \leq i \leq d$.}*/{ CGAL_assertion_msg((0<=i && i<=(dimension())),     "PointHd::homogeneous():index out of range.");  return entry(i);}Cartesian_const_iterator cartesian_begin() const /*{\Mop returns an iterator pointing to the zeroth Cartesian coordinate $p_0$ of |\Mvar|. }*/{ return Cartesian_const_iterator(ptr()->begin(),ptr()->last()); }Cartesian_const_iterator cartesian_end() const /*{\Mop returns an iterator pointing beyond the last Cartesian coordinate of |\Mvar|. }*/{ return Cartesian_const_iterator(ptr()->last(),ptr()->last()); }Homogeneous_const_iterator homogeneous_begin() const /*{\Mop returns an iterator pointing to the zeroth homogeneous coordinate $h_0$ of |\Mvar|. }*/{ return ptr()->begin(); }Homogeneous_const_iterator homogeneous_end() const /*{\Mop returns an iterator pointing beyond the last homogeneous coordinate of |\Mvar|. }*/{ return ptr()->end(); }PointHd<RT,LA> transform(const Aff_transformationHd<RT,LA>& t) const; /*{\Mop returns $t(p)$. }*//*{\Mtext \headerline{Arithmetic Operators, Tests and IO}}*/inline VectorHd<RT,LA> operator-(const Origin& o) const; /*{\Mbinop  returns the vector $\vec{0p}$.}*/VectorHd<RT,LA> operator-(const PointHd<RT,LA>& q) const /*{\Mbinop  returns $p - q$. \precond |p.dimension() == q.dimension()|.}*/{ VectorHd<RT,LA> res(dimension());   res.ptr()->homogeneous_sub(ptr(),q.ptr());  return res; }PointHd<RT,LA> operator+(const VectorHd<RT,LA>& v) const; /*{\Mbinop  returns $p + v$. \precond |p.dimension() == v.dimension()|.}*/PointHd<RT,LA> operator-(const VectorHd<RT,LA>& v) const; /*{\Mbinop  returns $p - v$. \precond |p.dimension() == v.dimension()|.}*/PointHd<RT,LA>& operator+=(const VectorHd<RT,LA>& v); /*{\Mbinop  adds |v| to |p|.\\\precond |p.dimension() == v.dimension()|. }*/PointHd<RT,LA>& operator-=(const VectorHd<RT,LA>& v); /*{\Mbinop  subtracts |v| from |p|.\\\precond |p.dimension() == v.dimension()|. }*/static Comparison_result cmp(  const PointHd<RT,LA>& p1, const PointHd<RT,LA>& p2){ Compare_homogeneously<RT,LA> cmpobj;  return cmpobj(p1.vector_rep(),p2.vector_rep());}bool operator==(const PointHd<RT,LA>& q) const{ if (this->identical(q)) return true;  if (dimension()!=q.dimension()) return false;  return cmp(*this,q) == EQUAL; }bool operator!=(const PointHd<RT,LA>& q) const{ return !(*this==q); }bool operator==(const Origin&) const/*{\Mbinop returns true if |\Mvar| is the origin. }*/{ for (int i = 0; i < dimension(); i++)    if (homogeneous(i) != RT(0)) return false;  return true;}friend std::istream& operator>> <>  (std::istream&, PointHd<RT,LA>&);friend std::ostream& operator<< <>   (std::ostream&, const PointHd<RT,LA>&);/*{\Mtext \headerline{Downward compatibility}We provide operations of the lower dimensional interface |x()|, |y()|,|z()|, |hx()|, |hy()|, |hz()|, |hw()|.}*/RT hx() const { return homogeneous(0); }RT hy() const { return homogeneous(1); }RT hz() const { return homogeneous(2); }RT hw() const { return homogeneous(dimension()); }Quotient<RT> x()  const { return Quotient<RT>(hx(),hw()); }Quotient<RT> y()  const { return Quotient<RT>(hy(),hw()); }Quotient<RT> z()  const { return Quotient<RT>(hz(),hw()); }}; // PointHd/*{\Mimplementation Points are implemented by arrays of |RT| items.  All operations likecreation, initialization, tests, point - vector arithmetic, input andoutput on a point $p$ take time $O(|p.dimension()|)$. |dimension()|,coordinate access and conversions take constant time.  The spacerequirement for points is $O(|p.dimension()|)$.}*/#undef PointHd CGAL_END_NAMESPACE#endif // CGAL_POINTHD_H //----------------------- end of file ----------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -