⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hyperplanecd.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2000,2001  Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel).  All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Kernel_d/include/CGAL/Kernel_d/HyperplaneCd.h $// $Id: HyperplaneCd.h 36190 2007-02-11 22:38:44Z spion $// //// Author(s)     : Michael Seel#ifndef CGAL_HYPERPLANECD_H#define CGAL_HYPERPLANECD_H#ifndef NOCGALINCL#include <CGAL/basic.h>#endifCGAL_BEGIN_NAMESPACE#define PointCd PointCd2template <class FT, class LA>std::istream& operator>>(std::istream&, HyperplaneCd<FT,LA>&);template <class FT, class LA>std::ostream& operator<<(std::ostream&, const HyperplaneCd<FT,LA>&); template <class _FT, class _LA>class HyperplaneCd : public Handle_for< Tuple_d<_FT,_LA> > {   typedef Tuple_d<_FT,_LA> Tuple;  typedef Handle_for<Tuple> Base;  typedef HyperplaneCd<_FT,_LA> Self;  using Base::ptr;const typename _LA::Vector& vector_rep() const { return ptr()->v; }_FT& entry(int i) { return ptr()->v[i]; }const _FT& entry(int i) const { return ptr()->v[i]; }void invert_rep() { ptr()->invert(); }public: typedef _FT RT;typedef _FT FT;typedef _LA LA;typedef typename Tuple::const_iterator Coefficient_const_iterator;HyperplaneCd(int d = 0) : Base( Tuple(d+1) ) {}template <class InputIterator>HyperplaneCd(int d, InputIterator first, InputIterator last, const FT& D)  : Base( Tuple(d+1,first,last,D) ) {}template <class InputIterator>HyperplaneCd(int d, InputIterator first, InputIterator last)  : Base( Tuple(d+1,first,last) ) {}template <class ForwardIterator> voidconstruct_from_points(ForwardIterator first, ForwardIterator last, 		      const PointCd<FT,LA>& o, Oriented_side side){   // inline due to template parameter  TUPLE_DIM_CHECK(first,last,hyperplane::construction);  CGAL_assertion_msg((first->dimension()==o.dimension()),   "hyperplane::construction: dimensions disagree.");  int d = first->dimension(); // we are in $d$ - dimensional space  int m = std::distance(first,last); // |P| has $m$ points  typename LA::Matrix A(m,d + 1);  for (int i = 0; i < m; i++) {  /* define $i$-th equation */    for (int j = 0; j < d; j++)        A(i,j) = first->cartesian(j); // $j$ - th coord of $i$-th point    A(i,d) = 1;    ++first;  }  typename LA::Matrix spanning_vecs; // columns span solution  int dim = LA::homogeneous_linear_solver(A,spanning_vecs);  CGAL_assertion_msg(dim != 0,   "HyperplaneCd::constructor: set P is full dimensional.");  if (side == ON_ORIENTED_BOUNDARY)   { ptr()->v = spanning_vecs.column(0); return; }  FT sum = 0; int j;  for (j = 0; j < dim; j++) {     for (int i = 0; i < d; i++)      sum += spanning_vecs(i,j)*o.cartesian(i);    sum += spanning_vecs(d,j);    if (sum != FT(0)) break;  }  CGAL_assertion_msg(j != dim,    "HyperplaneCd::constructor: cannot use o to determine side.");  ptr()->v = spanning_vecs.column(j);  if ( ( CGAL_NTS sign(sum) > 0 && side == ON_NEGATIVE_SIDE ) ||       ( CGAL_NTS sign(sum) < 0 && side == ON_POSITIVE_SIDE ) )    invert_rep();}template <class ForwardIterator>HyperplaneCd(ForwardIterator first, ForwardIterator last,              const PointCd<FT,LA>& o,             Oriented_side side = Oriented_side(0))  : Base( Tuple(o.dimension()+1) ) { construct_from_points(first,last,o,side); }HyperplaneCd(const PointCd<FT,LA>& p, const DirectionCd<FT,LA>& dir)   : Base( Tuple(p.dimension()+1) ) {   int d = p.dimension();   CGAL_assertion_msg((dir.dimension() == d),     "HyperplaneCd::constructor: parameter dimensions disagree.");  FT sum = 0;   for (int i = 0; i < d; i++) {     sum += dir.delta(i)*p.cartesian(i);    entry(i) = dir.delta(i);  }  entry(d) = -sum;}HyperplaneCd(const FT& a, const FT& b, const FT& c) :   Base( Tuple(a,b,c,MatchHelper()) ) {} HyperplaneCd(int a, int b, int c) :   Base( Tuple(FT(a),FT(b),FT(c),MatchHelper()) ) {} HyperplaneCd(const FT& a, const FT& b, const FT& c, const FT& d) :  Base( Tuple(a,b,c,d) ) {} HyperplaneCd(int a, int b, int c, int d) :   Base( Tuple(FT(a),FT(b),FT(c),FT(d)) ) {} HyperplaneCd(const HyperplaneCd<FT,LA>& h) : Base(h) {}~HyperplaneCd()  {}    int dimension() const { return ptr()->size()-1; }FT operator[](int i) const{ CGAL_assertion_msg((0<=i && i<=(dimension())),   "HyperplaneCd::op[]: index out of range.");   return entry(i); }FT coefficient(int i) const { return entry(i); }const typename LA::Vector& coefficient_vector() const{ return vector_rep(); }Coefficient_const_iterator coefficients_begin() const { return ptr()->begin(); }Coefficient_const_iterator coefficients_end() const{ return ptr()->end(); }inline VectorCd<FT,LA> orthogonal_vector() const; DirectionCd<FT,LA> orthogonal_direction() const { return orthogonal_vector().direction(); }FT value_at(const PointCd<FT,LA>& p) const{ CGAL_assertion_msg((dimension()==p.dimension()),    "HyperplaneCd::value_at: dimensions disagree.");  FT res(0);  for (int i=0; i<dimension(); ++i)     res += coefficient(i)*p.cartesian(i);  res += coefficient(dimension());  return res;}Oriented_side oriented_side(const PointCd<FT,LA>& p) const {   CGAL_assertion_msg(dimension()==p.dimension(),     "HyperplaneCd::oriented_side: dimensions do not agree.");   return Oriented_side(CGAL_NTS sign(value_at(p)));}bool has_on(const PointCd<FT,LA>& p) const { return (oriented_side(p) == ON_ORIENTED_BOUNDARY); }bool has_on_boundary(const PointCd<FT,LA>& p) const { return (oriented_side(p) == ON_ORIENTED_BOUNDARY); }bool has_on_positive_side(const PointCd<FT,LA>& p) const { return (oriented_side(p) == ON_POSITIVE_SIDE); }bool has_on_negative_side(const PointCd<FT,LA>& p) const { return (oriented_side(p) == ON_NEGATIVE_SIDE); }HyperplaneCd<FT,LA> transform(const Aff_transformationCd<FT,LA>& t) const{ Aff_transformationCd<FT,LA> t_inv = t.inverse();  typename LA::Vector res = LA::transpose(t_inv.matrix())*vector_rep();  if ( t_inv.is_odd() ) res = -res;  return HyperplaneCd<FT,LA>(dimension(),res.begin(),res.end()); }static Comparison_result weak_cmp(  const HyperplaneCd<FT,LA>&, const HyperplaneCd<FT,LA>&);static Comparison_result strong_cmp(  const HyperplaneCd<FT,LA>&, const HyperplaneCd<FT,LA>&);bool operator==(const HyperplaneCd<FT,LA>& h2) const{ if (this->identical(h2)) return true;  if (dimension()!=h2.dimension()) return false;  return HyperplaneCd<FT,LA>::strong_cmp(*this,h2) == EQUAL;}bool operator!=(const HyperplaneCd<FT,LA>& h2) const{ return !operator==(h2); }friend std::istream& operator>> <>   (std::istream&, HyperplaneCd<FT,LA>&);friend std::ostream& operator<< <>   (std::ostream&, const HyperplaneCd<FT,LA>&);}; // end of class HyperplaneCdtemplate <class FT, class LA>bool weak_equality(const HyperplaneCd<FT,LA>& h1,                   const HyperplaneCd<FT,LA>& h2)/*{\Mfunc test for weak equality. }*/{ if (h1.identical(h2)) return true;  if (h1.dimension()!=h2.dimension()) return false;  return HyperplaneCd<FT,LA>::weak_cmp(h1,h2) == EQUAL;}#undef PointCdCGAL_END_NAMESPACE#endif // CGAL_HYPERPLANECD_H//----------------------- end of file ----------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -