⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vectorcd.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2000,2001  Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel).  All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Kernel_d/include/CGAL/Kernel_d/VectorCd.h $// $Id: VectorCd.h 28567 2006-02-16 14:30:13Z lsaboret $// //// Author(s)     : Michael Seel#ifndef CGAL_VECTORCD_H#define CGAL_VECTORCD_H #ifndef NOCGALINCL#include <CGAL/basic.h>#endif#include <CGAL/Kernel_d/Tuple_d.h> CGAL_BEGIN_NAMESPACE#define PointCd PointCd2template <class FT, class LA> class VectorCd;template <class FT, class LA>std::istream& operator>>(std::istream&, VectorCd<FT,LA>&);template <class FT, class LA>std::ostream& operator<<(std::ostream&, const VectorCd<FT,LA>&);template <class _FT, class _LA>class VectorCd : public Handle_for< Tuple_d<_FT,_LA> > {   typedef Tuple_d<_FT,_LA>  Tuple;  typedef Handle_for<Tuple> Base;  typedef VectorCd<_FT,_LA> Self;  using Base::ptr;  using Base::copy_on_write;typename _LA::Vector& vector_rep() { return ptr()->v; }const typename _LA::Vector& vector_rep() const { return ptr()->v; }_FT& entry(int i) { return ptr()->v[i]; }const _FT& entry(int i) const { return ptr()->v[i]; }void invert_rep() { ptr()->invert(); }VectorCd(const Base& b) : Base(b) {}public: typedef _FT RT;typedef _FT FT;typedef _LA LA;typedef typename Tuple::const_iterator Cartesian_const_iterator;typedef typename Tuple::Homogeneous_const_iterator Homogeneous_const_iterator;class Base_vector {};friend class PointCd<FT,LA>;friend class DirectionCd<FT,LA>;friend class HyperplaneCd<FT,LA>; VectorCd(int d = 0) : Base( Tuple(d) ) {}VectorCd(int d, Null_vector) : Base( Tuple(d) ) {}template <class InputIterator>VectorCd(int d, InputIterator first, InputIterator last)   : Base( Tuple(d,first,last) ) { if ( first == last ) return;   // else first specifies common denominator:  CGAL_assertion_msg(*first!=FT(0),    "VectorCd::constructor: denominator must be nonzero.");  for (int i=0; i<d; ++i) entry(i)/=*first;}template <class InputIterator>VectorCd(int d, InputIterator first, InputIterator last,          const FT& D) : Base( Tuple(d,first,last) ){ CGAL_assertion_msg(D!=FT(0), "VectorCd::constructor: D must be nonzero.");  for (int i=0; i<d; ++i) entry(i)/=D;}VectorCd(int d, Base_vector, int i) : Base( Tuple(d) ){ if ( d == 0 ) return;  CGAL_assertion_msg((0<=i&&i<d),"VectorCd::base: index out of range.");  entry(i) = 1;}VectorCd(const FT& x, const FT& y, const FT& w = 1)   : Base( Tuple(x,y) ) { CGAL_assertion_msg((w!= FT(0)), "VectorCd::construction: w == 0.");  vector_rep()/=w; }VectorCd(int x, int y, int w = 1)   : Base( Tuple((FT)x,(FT)y) ) { CGAL_assertion_msg((w!=0), "VectorCd::construction: w == 0.");  vector_rep()/=w; }VectorCd(const FT& x, const FT& y, const FT& z, const FT& w)   : Base( Tuple(x,y,z) ) { CGAL_assertion_msg((w!=FT(0)), "VectorCd::construction: w == 0.");  vector_rep()/=w; }VectorCd(int x, int y, int z, int w) :  Base( Tuple((FT)x,(FT)y,(FT)z, MatchHelper()) ){ CGAL_assertion_msg((w!=0), "VectorCd::construction: w == 0.");  vector_rep()/=w; }VectorCd(const VectorCd<FT,LA>& p) : Base(p)  {}~VectorCd() {}     int dimension() const { return ptr()->size(); } FT cartesian(int i) const { CGAL_assertion_msg((0<=i && i<(dimension())),     "VectorCd::cartesian(): index out of range.");  return entry(i); }FT operator[](int i) const { return cartesian(i); }FT homogeneous(int i) const { CGAL_assertion_msg((0<=i && i<=(dimension())),     "VectorCd::homogeneous(): index out of range.");  if (i!=dimension()) return entry(i); else return FT(1);}FT squared_length() const{ return vector_rep()*vector_rep(); }Cartesian_const_iterator cartesian_begin() const { return ptr()->begin(); }Cartesian_const_iterator cartesian_end() const { return ptr()->end(); }Homogeneous_const_iterator homogeneous_begin() const { return Homogeneous_const_iterator(ptr()->begin(),ptr()->end()); }Homogeneous_const_iterator homogeneous_end() const { return Homogeneous_const_iterator(ptr()->beyondend()); }inline PointCd<FT,LA> to_point() const;inline DirectionCd<FT,LA> direction() const; /*{\Mop returns the direction of |\Mvar|. }*/VectorCd<FT,LA> transform(const Aff_transformationCd<FT,LA>& t) const; VectorCd<FT,LA> scale(const FT& m) const{ VectorCd<FT,LA> result(*this);  result.copy_on_write();   result.vector_rep() *= m;  return result; }void self_scale(const FT& m){ copy_on_write();  vector_rep() *= m;}VectorCd<FT,LA>& operator*=(const FT& n) { self_scale(n); return *this; }VectorCd<FT,LA>& operator*=(int n) { self_scale(n); return *this; }VectorCd<FT,LA> operator/(int n) const{ return scale(FT(1)/FT(n)); }VectorCd<FT,LA> operator/(const FT& n) const{ return scale(FT(1)/n); }VectorCd<FT,LA>& operator/=(const FT& n){ self_scale(FT(1)/n); return *this; }VectorCd<FT,LA>& operator/=(int n) { self_scale(FT(1)/FT(n)); return *this; }FT operator* (const VectorCd<FT,LA>& w) const{ return vector_rep()*w.vector_rep(); }VectorCd<FT,LA> operator+(const VectorCd<FT,LA>& w) const { VectorCd<FT,LA> result(w.dimension());   result.ptr()->cartesian_add(ptr(),w.ptr());  return result; }VectorCd<FT,LA> operator-(const VectorCd<FT,LA>& w) const { VectorCd<FT,LA> result(w.dimension());  result.ptr()->cartesian_sub(ptr(),w.ptr());  return result; }VectorCd<FT,LA> operator-() const { VectorCd<FT,LA> result(*this);  result.copy_on_write(); // creates a copied object!  result.ptr()->invert();  return result; }VectorCd<FT,LA>& operator+=(const VectorCd<FT,LA>& w) { copy_on_write(); vector_rep() += w.vector_rep();   return *this; }VectorCd<FT,LA>& operator-=(const VectorCd<FT,LA>& w) { copy_on_write(); vector_rep() -= w.vector_rep();   return *this; }static Comparison_result cmp(  const VectorCd<FT,LA>& x, const VectorCd<FT,LA>& y) { Compare_componentwise<FT,LA> cmpobj;  return cmpobj(x.vector_rep(),y.vector_rep());}bool operator==(const VectorCd<FT,LA>& w) const{ if ( this->identical(w) ) return true;  if ( dimension() != w.dimension() ) return false;  return vector_rep()==w.vector_rep();}bool operator!=(const VectorCd<FT,LA>& w) const{ return !operator==(w); }bool is_zero() const{ return vector_rep().is_zero(); }FT hx() const { return cartesian(0); }FT hy() const { return cartesian(1); }FT hz() const { return cartesian(2); }FT hw() const { return FT(1); }FT x()  const { return cartesian(0); }FT y()  const { return cartesian(1); }FT z()  const { return cartesian(2); }friend std::istream& operator>> <>  (std::istream& I, VectorCd<FT,LA>& v);friend std::ostream& operator<< <>  (std::ostream& O, const VectorCd<FT,LA>& v);}; // end of class VectorCd#undef PointCdCGAL_END_NAMESPACE#endif // CGAL_VECTORCD_H //----------------------- end of file ----------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -