⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 directionhd.h

📁 很多二维 三维几何计算算法 C++ 类库
💻 H
字号:
// Copyright (c) 2000,2001  Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel).  All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Kernel_d/include/CGAL/Kernel_d/DirectionHd.h $// $Id: DirectionHd.h 28567 2006-02-16 14:30:13Z lsaboret $// //// Author(s)     : Michael Seel#ifndef CGAL_DIRECTIONHD_H#define CGAL_DIRECTIONHD_H#ifndef NOCGALINCL#include <CGAL/basic.h>#include <CGAL/Quotient.h>#endif#include <CGAL/Kernel_d/Tuple_d.h> #include <CGAL/Kernel_d/PointHd.h>#include <CGAL/Kernel_d/VectorHd.h>#include <CGAL/Kernel_d/Aff_transformationHd.h>CGAL_BEGIN_NAMESPACEtemplate <class RT, class LA> class DirectionHd;template <class RT, class LA>std::istream& operator>>(std::istream&, DirectionHd<RT,LA>&);template <class RT, class LA>std::ostream& operator<<(std::ostream&, const DirectionHd<RT,LA>&);/*{\Manpage{Direction_d}{R}{Directions in d-space}{dir}}*//*{\Msubst Hd<RT,LA>#_d<R>VectorHd#Vector_dDirectionHd#Direction_dQuotient<RT>#FT}*/template <class _RT, class _LA>class DirectionHd : public Handle_for< Tuple_d<_RT,_LA> > {   typedef Tuple_d<_RT,_LA> Tuple;  typedef Handle_for<Tuple> Base;  typedef DirectionHd<_RT,_LA> Self;  using Base::ptr;/*{\Mdefinition A |DirectionHd| is a vector in the $d$-dimensional vector spacewhere we forget about its length. We represent directions in$d$-dimensional space as a tuple $(h_0,\ldots,h_d)$ of variables oftype |RT| which we call the homogeneous coordinates of thedirection. The coordinate $h_d$ must be positive.  The Cartesiancoordinates of a direction are $c_i = h_i/h_d$ for $0 \le i < d$,which are of type |Quotient<RT>|.  Two directions are equal if theirCartesian coordinates are positive multiples of each other. Directionsare in one-to-one correspondence to points on the unit sphere.}*/const typename _LA::Vector& vector_rep() const { return ptr()->v; }_RT& entry(int i) { return ptr()->v[i]; }const _RT& entry(int i) const { return ptr()->v[i]; }void invert_rep() { ptr()->invert(); }public: /*{\Mtypes 4}*/typedef _RT RT;/*{\Mtypemember the ring type.}*/typedef Quotient<_RT> FT;/*{\Mtypemember the field type.}*/typedef _LA LA;/*{\Mtypemember the linear algebra layer.}*/typedef typename Tuple::const_iterator Delta_const_iterator;/*{\Mtypemember a read-only iterator for the deltas of |\Mvar|.}*/class Base_direction {};/*{\Mtypemember construction tag.}*/friend class VectorHd<RT,LA>; /*{\Mcreation 4}*/DirectionHd(int d = 0) : Base( Tuple(d+1) )  /*{\Mcreate introduces a variable |\Mvar| of type |DirectionHd<RT,LA>| initialized to some direction in $d$-dimensional space.}*/{ if (d>0) entry(d) = 1; }DirectionHd(const VectorHd<RT,LA>& v);/*{\Mcreate introduces a variable |\Mvar| of type |DirectionHd<RT,LA>| initialized to the direction of |v|.}*/template <class InputIterator>DirectionHd(int d, InputIterator first, InputIterator last) :   Base( Tuple(d+1,first,last,1) ) {}/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in dimension |d|with representation tuple |set [first,last)|. \precond |d| isnonnegative, |[first,last)| has |d| elements and the value type of |InputIterator| is |RT|.}*/DirectionHd(int d, Base_direction, int i) : Base( Tuple(d+1) )/*{\Mcreate returns a variable |\Mvar| of type |\Mname| initialized  to the direction of the $i$-th base vector of dimension $d$.\precond $0 \leq i < d$.}*/{ entry(d) = 1;   if ( d==0 ) return;  CGAL_assertion_msg((0<=i&&i<d), "DirectionHd::base: index out of range.");  entry(i) = 1;}DirectionHd(const RT& x, const RT& y) : Base( Tuple(x,y,1) ) {}/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in $2$-dimensional space. }*/DirectionHd(int a, int b) :   Base( Tuple(RT(a),RT(b),RT(1),MatchHelper()) ) {}DirectionHd(const RT& x, const RT& y, const RT& z) :   Base( Tuple(x,y,z,1) ) {}/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in $3$-dimensional space. }*/DirectionHd(int a, int b, int c) :   Base( Tuple(RT(a),RT(b),RT(c),RT(1)) ) {}DirectionHd(const DirectionHd<RT,LA>& p) : Base(p)  {}~DirectionHd() {}     /*{\Moperations 5 3}*/int dimension() const { return ptr()->size()-1; }/*{\Mop returns the dimension of |\Mvar|. }*/ RT delta(int i) const  /*{\Mop returns the $i$-th component of |\Mvar|.    \precond $0 \leq i < d$.}*/{ CGAL_assertion_msg((0<=i && i<(dimension())), "DirectionHd::delta():\  index out of range.");  return entry(i);}RT D() { return entry(dimension()); }RT operator[](int i) const  /*{\Marrop returns the $i$-th delta of |\Mvar|. \precond $0 \leq i < d$.}*/{ return delta(i); }Delta_const_iterator deltas_begin() const { return ptr()->begin(); }/*{\Mop  returns an iterator pointing to the first delta of |\Mvar|. }*/Delta_const_iterator deltas_end() const { return ptr()->last(); }/*{\Mop  returns an iterator pointing beyond the last delta of |\Mvar|. }*/VectorHd<RT,LA> vector() const; /*{\Mop returns a vector pointing in direction |\Mvar|. }*/bool  is_degenerate() const /*{\Mop returns true iff |\Mvar.vector()| is the zero vector.}*/{ for (int i=0; i<dimension(); ++i)    if ( delta(i) != RT(0) ) return false;  return true; }DirectionHd<RT,LA> transform(const Aff_transformationHd<RT,LA>& t) const; /*{\Mop returns $t(p)$. }*/DirectionHd<RT,LA>  opposite() const/*{\Mop returns the direction opposite to |\Mvar|. }*/{ DirectionHd<RT,LA> result(*this); // creates a copied object!  result.copy_on_write(); // creates a copied object!  result.ptr()->invert(dimension());   return result; }DirectionHd<RT,LA>  operator- () const/*{\Munop returns the direction opposite to |\Mvar|.}*/{ return opposite(); }static Comparison_result cmp(  const DirectionHd<RT,LA>& h1, const DirectionHd<RT,LA>& h2); bool operator==(const DirectionHd<RT,LA>& w) const{ if ( this->identical(w) ) return true;  if ( dimension()!=w.dimension() ) return false;  return (DirectionHd<RT,LA>::cmp(*this,w) == EQUAL); }bool operator!=(const DirectionHd<RT,LA>& w) const{ return !operator==(w); }/*{\Mtext \headerline{Downward compatibility}We provide all operations of the lower dimensional interface |dx()|,|dy()|, |dz()|.}*/RT dx() const { return delta(0); }RT dy() const { return delta(1); }RT dz() const { return delta(2); }friend std::istream& operator>> <>  (std::istream& I, DirectionHd<RT,LA>& d);friend std::ostream& operator<< <>  (std::ostream& O, const DirectionHd<RT,LA>& d);}; // end of class DirectionHd/*{\Mimplementation Directions are implemented by arrays of integers as an item type.  Alloperations like creation, initialization, tests, inversion, input andoutput on a direction $d$ take time $O(|d.dimension()|)$. |dimension()|,coordinate access and conversion take constant time.  The spacerequirement is $O(|d.dimension()|)$.  }*/CGAL_END_NAMESPACE#endif // CGAL_DIRECTIONHD_H//----------------------- end of file ----------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -